صفحه اصلي | فهرست مقالات | مطالب جديد | خبرنامه | تالار گفتگو | طراحي وب | آلبوم تصاوير | جستجو | درباره ما | پرسش و پاسخ

 
بخش ها
  • تبادل لينك رايگان بازديد : 1028


  • اتوماسيون صنعتي بهارستان بازديد : 1435


  • معرفي ماشين آلات صنعتي بازديد : 1232


  • معرفي ماشين سازان بازديد : 1045


  • شبكه هاي هوشمند توزيع برق Smart Grid & MicroGrid بازديد : 3215


  • انرژي هاي تجديدپذير (نو ) بازديد : 1668

  • آب - خورشید - باد - ژئوترمال - بایومس - پیل سوختی و ...
  • دعوت به همكاري بازديد : 1210


  • مزايده و مناقصه بازديد : 1024


  • آمار بازديد بازديد : 892


  • تالار گفتگو راه اندازي شد بازديد : 857


  • عضويت در خبرنامه بازديد : 1843

  • با عضویت در خبرنامه آخرین مطالب سایت را دریافت کنید
  • لينك هاي منتخب بازديد : 2935


  • لينك هاي مفيد بازديد : 4482


  • سايت هاي مرتبط
  • فيلدباس و اتوماسيون

  • شبكه فيزيك هوپا

  • كارگاه هواشناسي

  • مهندسي برق

  • مجله در مورد سنسورها

  • www.control.com

  • temperatures.com

  • فهرست وب سايت هاي ايراني





  • Web Master : Ahmad Zeini
    انواع نيروگاههاي توليد برق
    انواع نيروگاههاي توليد برق
    انواع نیروگاههای تولید برق به صورت زیر می باشند که ابتدا تک تک نوشته و توضیحات آن را قرار می دهیم
    1- تولید انرژی توسط جزر و مد 2- تولید انرژی توسط بیوماس 3- تولید انرژی توسط باد ......

    انواع نيروگاههاي توليد برق

    انواع نيروگاههاي توليد برق به صورت زير مي باشند كه ابتدا تك تك نوشته و توضيحات آن را قرار مي دهيم

    1- توليد انرژي توسط جزر و مد

    2- توليد انرژي توسط بيوماس

    3- توليد انرژي توسط باد

    4. نيروگاه سيكل تركيبي

    5. نيروگاه هسته اي

    6.نيروگاه حرارتي

    7.نيروگاه زمين گرمايي

    8.نيروگاه گازي

    توليد انرژي توسط جزر و مد


    نيروگاه هاى توليد الكتريسيته در اعماق آب درياها با استفاده از قدرت جزر و مد مى توانند كمكى براى مسئله انرژى جامعه بشرى باشند. نخستين پروژه از اين نمونه با يك سيستم نوين، در حال حاضر مشغول به كار است.

    پره هاى 11 مترى يك توربين زير آبى به آرامى و بدون سر و صدا در حال گردشند. اين نخستين پروژه توليد الكتريسيته از نيروى جزر و مد در عمق درياست كه به شيوه اى نوين به كار گرفته شده است. توربين هاى توليد انرژى، كه در عمق 20 مترى در فاصله 2 كيلومترى ساحل «دوون» واقع در جنوب غربى انگليس كار مى كنند حاصل 4 سال تلاش مهندسان و كارشناسان دانشگاه كاسل آلمان است. اين تنها نيروى جزر و مد است كه پروانه هاى عظيم اين توربين هاى زيرآبى، با نام «جريان دريايى» را به چرخش درمى آورد. اين توربين ها، برخلاف توربين هاى بادى كه وابسته به شرايط آب و هوايى هستند مى توانند در اعماق دريا و به دور از تغيير و تحولات جوى به طور دائم به كار خود ادامه داده و به توليد الكتريسيته بپردازند.

    در واقع، اينجا، صحبت از يك منبع انرژى پايان ناپذير است. البته بايد خاطرنشان شد كه استفاده از اين نيرو، ايده جديدى نيست. در قرن يازدهم ميلادى نيز آسيابان هاى سواحل ولز، سنگ هاى آسياب خود را با كمك نيروى جزر و مد به كار مى انداختند و بر همين اساس هم يك نيروگاه بهره بردارى از قدرت جزر و مد در «سانت متلو»ى فرانسه از 35 سال پيش تاكنون به كار مشغول است. اما از اين روش، تنها در شمار اندكى از سواحل جهان مى توان استفاده كرد. يعنى در سواحلى كه تفاوت ارتفاع سطح آب، در حين جزر و مد بيش از چندين متر است.

    توربين موسوم به «جريان دريايى» نيز، از اين تفاوت ارتفاع استفاده مى كند. اما كار اين توربين، بر اصل ديگرى استوار است. اين چرخ آسياب زير دريايى، مانند نمونه هايى كه قبلاً از آنها ياد كرديم از نيروهاى عمودى بالا و پائين رفتن سطح آب استفاده نمى كند بلكه از جريان هاى افقى اى بهره مى گيرد كه بر اثر جزر و مد به وجود مى آيند. به همين دليل اين توربين جديد مى تواند در مكان هاى ديگر با ميزان كمتر جزر و مد نيز به كار گرفته شود.

    از مزيت هاى ديگر اين توربين ها مى توان به اين نكته اشاره كرد كه براى به حركت درآوردن اين توربين ها نيروى زيادى لازم نبوده و اين توربين ها قادرند با سرعت هاى بسيار پائين نيز به حركت درآيند. ميزان كار مفيد به دست آمده از اين توربين ها 2 برابر ميزان كار مفيد توربين هاى بادى بر روى زمين است چرا كه جرم حجمى آب 700 بار بيشتر از جرم حجمى هواست و به همين علت نيروهاى انتقال يافته بزرگتر هستند. بايد يادآورى كنيم كه توربين «جريان دريايى» هنوز به صورت آزمايشى و با ميزان توليد حداكثر 300 كيلووات كار مى كند اما قرار است به زودى توربين ديگرى به كار گرفته شود كه حداقل 2 برابر توربين كنونى است.

    متخصصان امر، تنها در اروپا 100 محل را شناسايى كرده اند كه مى توان در آنها با كمك نيروى جريان هاى دريايى، اختلاف ارتفاع سطح آب در هنگام جزر و مد و امواج، جمعاً 12 هزار مگاوات الكتريسيته توليد كرد: يعنى به ميزان 10 نيروگاه بزرگ اتمى. انرژى توليد شده 15 تا 20 درصد انرژى مورد نياز كشورهاى اروپايى است.

    در سواحل نروژ توربين هاى مشابهى به كار گرفته شده اند. اين توربين ها قرار است به صورت آزمايشى، ابتدا تامين كننده برق ،50 سپس 1000 و سرانجام 20 هزار خانه مسكونى باشند. در سواحل جزيره «شتلند» توربين ديگرى به توليد الكتريسيته مشغول است. در مقابل سواحل كاليفرنيا، فلوريدا و كرانه شرقى كانادا پروژه اى مشابه به كار گرفته شده است. كارشناسان معتقدند طى 30 سال آينده مى توان از اين توربين ها براى توليد 40 درصد از انرژى مورد نياز خانه هاى مسكونى بهره جست.

    در سواحل اسكاتلند براى توليد الكتريسيته تنها از نيروى امواج استفاده مى شود. باله ها جريان امواج را به درون تونلى منتقل كرده و به اين ترتيب توده هوا را به جلو مى رانند و با كمك اين توده هوا توربينى به گردش در مى آيد. اما ساده ترين سيستم بهره بردارى از انرژى جزر و مد سيستمى است كه دانماركى ها به كار مى گيرند. در اين سيستم، امواج مستقيماً توسط يك سطح شيب دار به سوى پره هاى توربين رانده مى شوند و آن را به حركت درمى آورند. طبق محاسبات شوراى مشورتى انرژى جهانى، حركت هاى دريايى از اين پتانسيل برخوردارند كه تمامى نياز جهان به انرژى را تامين سازند. البته سواحل كشور آلمان به خاطر رفت و آمد زياد كشتى ها و سرعت اندك جريان هاى آبى براى اين منظور مناسب نيستند.

    در حال حاضر تقريباً 86 درصد از انرژى مورد نياز جهانيان توسط زغال سنگ، گاز طبيعى و نفت خام تامين مى گردد. اين سوخت هاى فسيلى نه تنها اثر گلخانه اى را در اتمسفر زمين تشديد مى كنند كه به نوبه خود تغييرات آب و هوايى را به دنبال دارد، بلكه منابع پايان ناپذيرى نبوده و سرانجام، روزى به پايان خواهند رسيد. طبق ارزيابى كارشناسان امر منابع نفت خام زمين كه به تنهايى 40 درصد از انرژى جهان را تامين مى كنند طى 50 تا 70 سال آينده به پايان خواهند رسيد.
    ارسالي توسط
    [فقط كاربران سايت قادر به مشاهده ي لينك ها ميباشند . ]
    اقيانوسها، ذخاير بالقوه عظيم انرژي مجاني و سازگار با محيط‌زيست هستند كه مي‌توان براي تامين تقاضاي انرژي آنها را مهار كرد. اقيانوسها 97 درصد از منابع آبي را شامل مي‌شوند و بيش از 70 درصد سطح كره زمين را مي‌پوشانند. جذر و مدها توسط چرخش زمين داخل ميدان جاذبه ماه و خورشيد توليد مي‌شوند. حركتي كه در اثر جاذبه بين اين سيارات وجود دارد سبب بالا و پايين رفتن پريوديك سطح آب اقيانوسها مي‌شوند. در بيشتر سواحل، جذر و مدها دوبار در روز رفت و برگشت دارند و توسط نيروگاه جذر و مد مي‌توان انرژي اين حركت را گرفت. يك نيروگاه جذر و مد مي‌تواند بر روي يك دلتا، دهانه ورودي رودخانه به دريا و يا ساحل گسترانده شود، اما بروي دهانه ورودي رودخانه به دريا اين انرژي راحت‌تر مهار مي‌شود.
    بهترين محل‌ها براي نيروگاههاي جذرومد، جايي با بيشترين دسترسي به جذر و مدهاست و همچنين دهانه باريك رودخانه به دريا، سدهايي كه براي اين منظور ساخته مي‌شوند مي‌تواند حفاظي در مقابل طغيانهاي ساحلي بوجود آورد و به عنوان سدهايي در مقابل يورش موج‌هاي بلند عمل كنند. علي‌الخصوص در محل‌هاي بزرگ، حضور راهي بروي سد، مزاياي عمده‌اي بدنبال دارد.
    بيشترين مزاياي قابل توجه در نيروگاه جذرو مد اين است كه آنها آلودگي زيست‌محيطي بدنبال ندارند. همانند ديگر ذخاير قابل تجديد انرژي، انرژي جذرو مد جايگزين سوخت فسيلي شده و CO2 را در اتمسفر كاهش مي‌دهد.

    مزايا و قيمتها:
    در حالي كه نيروگاههاي هيدروالكتريك در ساعت‌هاي مقرر به كار گرفته مي شوند، نيروگاههاي جذر و مد تنها در ساعت‌هاي خاصي از روز مي‌توانند الكتريسيته توليد‌كننده، با مقادير آب و جذر و مد كافي و فراهم شده.
    قيمت سيستمهاي جذرو مد بسته به خصوصيات زيست‌محيطي و جغرافيايي و زمين‌شناسي محل تغيير مي‌كند. طبق مطالعات بعمل آمده هزينه‌هاي گزاف و زمان‌هاي درازمدتي كه صرف ساخت مي‌شود، از به اجرا درآمدن طرح‌هاي عظيم در اين زمينه جلوگيري مي‌كند. تنها نيروگاههاي جذر و مد عظيم كه مقدار سرمايه‌‌گذاري كلاني را مي‌طلبند، اقتصادي خواهند بود. از عوامل عمده تاثيرگذاري بر روي هزينه‌ها درمحل نيروگاه مي‌توان اندازه سدهاي مورد نياز و اختلاف ارتفاع سطح جذر و مد ها را نام برد. هرچند هزينه‌هاي ابتدايي يك نيروگاه جذر ومد در مقايسه با ديگر انواع نيروگاهها نسبتاً بالاست، اما مزايايي شامل هزينه‌هاي عملياتي و نگهداري پايين دارند باتوجه به اينكه هيچ سوختي مورد نياز نيست.
    عوامل تاثيرگذار در هزينه‌هاي مورد نياز در محل نيروگاه جذر و مد شامل اندازه سدهاي مورد نياز و تفاوت ارتفاع بين جذرو مدهاست.
    توليد قدرت جذرو مد مزاياي اضافي ديگر هم دارد شامل حمل و نقل پيشرفته علاوه بر پلهاي ريلي بر روي دهانه‌هاي ورودي رودخانه به دريا و كاهش گازهاي گلخانه‌اي توسط جايگزيني توان حاصله پاك به جاي سوختهاي فسيلي
    پروژه‌اي كه در اين زمينه بتواند اين مزايا را نشان دهد، نيروگاه جذرو مد سيوا است كه توسط مهندس دوو (Daewoo) ساخته شده و بر روي سيوا در كره جنوبي بنا شده است. اين پروژه 250 ميليون دلاري و mw260 مگاواتي در كشور، در نوع خودش اولين محسوب مي‌شود و انتظار مي‌رود در جهت بهبود كيفيت آب درياچه سيوا هم نقش خود را بخوبي ايفا كند.
    ديگر مزايايي كه اين پروژه براي كره به همراه خواهد آورد شامل اكوسيستم وكيفيت آب قابل استرداد درياچه سيوا، فعال‌سازي اقتصادي محلي، علاوه بر جاذبه‌هاي توريستي، كاهش واردات مواد نفتي خام و كاهش در آلودگي زيستي است.

    جدول 1- اطلاعات فني سيوا
    خروجي هر واحد (Mw/MwA) 26076/26
    اندازه سر امواج (m) 5082
    سرعت (r/min) 6403
    قطر پايه (m) 705
    فعاليت‌هاي قابل تجديد و جايگزين مورد نظر
    توسعه صنعتي كره كه در سالهاي 1970 شروع شد، تمركز بر روي تقويت انرژي و صنايع شيميايي، شامل فولاد، كشتي‌سازي و سيمان است. كره به واردات انرژي بيش از حد وابسته است و سعي در تهيه و تدارك مطمئني براي خود ازجاي ديگر، براي مثال گاز از روسيه است. همچنين با اين پروژه از توسعه و امتياز خوبي در جهت عرضه انرژي قابل بازيابي برخوردار مي‌شود.
    هر واحد داراي ظرفيت 26 مگاوات، قطر پايه 5/7 متر، سرعت 290/64 و حداقل ارتفاع مجاز 82/5 عمل مي‌كند.
    كره چهارمين واردكننده بزرگ مواد نفتي است و براي متنوع كردن منابع انرژي خود تامين تقاضاي بالا انرژي، و برنامه‌هاي كاهش انتشار گاز گلخانه‌اي تلاش مي‌كند. كره براي منابع انرژي ديگر خود برنامه‌ريزي مي‌كند و قصد افزايش سهم انرژي‌هاي ديگر را در تركيب سوختي‌اش از 4/1 درصد به 5 درصد تا سال 2011 دارد. كره روزانه 5/2 ميليون بشكه نفت وارد مي‌كند كه نمايانگر مقدار كمي از نيازش است. هدف اصلي اين كشور پروژه‌هاي باد و خورشيدي جهت استفاده بيشتر از انرژيهاي قابل تجديد است. علاوه براين كره در حال تست كردن پتانسيل پروژه‌هاي جذر و مد در سواحلش است.
    كره كه در سال 2002 پيمان كيوتو را به تصويب رسانده به دنبال كشف راههاي انجام پروژه‌هاي AIJ (فعاليت‌هاي اجرايي مشترك يا عام‌المنفعه) و CDM (مكانيزم توسعه پاك) است.
    شركت منابع آبي كره، كواكو (Kowaco) داراي نفوذي در سيستم آبي در كره است. كواكو ملزم به ايفاي نقشش در جهت بهبود كيفيت زندگي مردم كره و حمايت از توسعه اقتصاد ملي است.

    درياچه سيوا:
    درياچه سيوا در نيمه غربي شبه جزيره كره در ايالات جيونگي (Gyeonggi) واقع شده است درياي غربي را توسط سد تا فاصله 4km از شهر سيونگ (Siheung) مرزبندي كرده است. اين درياچه در سال 1994 براي تامين آب كشاورزي منطقه و براي توسعه زمينهاي كشاورزي، صنعتي نزديك شهرها و تامين آب آبياري آنها توسط ساخت يك سد، بنا شد. در كنار ساخت درياچه‌اي با وسعت 5/56km (يكي از بزرگترين درياچه‌هاي داراي جزرو مد در كره) زميني به مساحت 173 كيلومتر مربع و 330 ميليون متر مربع ارزش پيدا كرد.
    در صورت قطع جريان‌هاي جذرو مد و با توجه با افزايش سريع جمعيت و بارهاي بيهوده‌ صنعتي از كارخانه‌اي اطراف،‌كيفيت آب درياچه سيوا سالها پس از ساخت سد بدتر مي‌شد. نسبت آ‌ب‌هاي آلوده به آبهاي تميز و پخش پساب از كارخانه‌هاي اطراف هم در حال افزايش است.
    در حالي كه آلودگي در وضعيت وخيمي بسر مي‌برد و به راه حل فوري نياز دارد. به دليل تغييرات سريع زيست‌محيطي و پايين‌ آمدن كيفيت آب در درياچه سيوا، راهي به جز باز كردن درياچه نماند. سد بر روي شارش ورودي به درياچه گشوده خواهد شد و نيروگاه جذرو مد براي انرژي اين جذر و مدها ساخته خواهد شد.

    طراحي نيروگاه:
    نيروگاه جذر و مد مانند يك سيستم توليد شارش سيلابي طراحي شده است. سيستم‌هاي توليد شاره توان را از آمد ورفت امواج از دريا به آبگير (پشت سد) توليدمي‌كنند. هنگام مد شارش آب به داخل توربين‌ها توليد الكتريسيته مي‌كند دريچه‌هاي جداگانه‌اي كه در كنار توربين‌ها تعبيه شده‌اند هنگام حالت برگشت باز مي‌شوند.
    هنگام جذر، دريچه‌ها بالا مي‌روند و آب خارج مي‌شود. در حالت افول و برگشت آب انرژي توليد نمي‌شود.
    پروژه‌ نيروگاه سيوا در نوع خودش در كره اولين است. چنين برنامه‌ريزي شده است كه سد ساخته شده براي گردش و تبادل آب بين درياچه و دريا آب باز شود. اين نيروگاه،‌وضعيت درياچه را با جابجايي سالانه 60 بيليون تن از آب دريا بهبود بخشيد. نيروگاه سيوا از ورود امواج هنگام مد، توان توليد مي كند از اختلاف سطوح بين آب دريا و درياچه مصنوعي سود مي‌برد. كواكو به عنوان صاحب امتياز پروژه نيروگاه را به مجموع خروجي 260mw و توليدتوان سالانه 543 گيگاولت ساعت به اجرا درخواهد آورد.
    نيروگاه سيوا شامل موتورخانه‌هايي براي 10 توربين نوع لامپ الكتريك در ژنراتورها، دريچه‌ها و ديگر تجهيزات را شامل مي‌شود. هر واحد ظرفيت mw26 دارد. ضخامت پايه 5/7 متر سرعت 29/64 ولت بر دقيقه و در اندازه مشخص 82000/5 به كار انداخته مي‌شوند عمل تخليه آبگير توسط هشت دريچه جديد و وجود دريچه‌هاي اضافي انجام خواهد شد.
    هزينه كلي پروژه حدود 250 ميليون دلار خواهد بود.

    پيشنهادات رقابتي
    پروژه، پروژه مناقصه بومي سنگين و پردرآمدي توسط شركتهاي مهندسي داخلي به عنوان شركت‌هاي راهنما و تهيه‌كننده‌ها و شركتهاي مهندسي به عنوان پيمانكاران جزء بود. مسووليت گروه‌ها مانند درخت براي پروژه تعريف شده بود. راهنماهاي اين گروه شركت‌هاي داخلي كره‌اي متعهد، با تهيه‌كننده‌هاي تجهيزات وشركت‌هاي مهندسي بودند تجمع شركت‌هاي ساختماني دوو (Daewoo) با مهندسي دوو و شركت ساختماني به عنوان راهنما در پروژه شريك شدند و توسط شركت مشاوره مهندسي سامان (Sam-An) در مناقصه برنده شده و كواكو قرارداد را اعطا كرد. كواكو از بين شركت‌كنندگان در مناقصه بر طبق معيارهاي: قيمت (30%)، تخصص فني(45%)، و مراجع (25%) شركت مورد نظر را انتخاب كرد. دوو به عنوان شركت‌كننده برگزيده اعلام و موظف شد طرح‌هاي خود را با جزييات كامل قبل از اعطاي پروژه به او آماده كند. در مناقصه دوو قيمت بالاتري را نسبت به رقيب خود هيوندا (Hyundai) ارايه كرد.
    Va Tech Hydro به عنوان پيمانكار جزء دوو براي تهيه تجهيزات معين و خدمات با توجه به بخش‌هاي الكترومكانيكي مسوول خواهد بود.
    Va Tech Hydro به عنوان تهيه‌كننده فني پروژه نيروگاه سيوا عمل خواهد كرد و طراحي‌هاي جزيي براي تجهيزات توربين و ژنراتور ارايه خواهد داد.
    علاوه بر اين شركت تمام تجهيزات اصلي براي توربين‌ها و ژنراتورها را تغذيه خواهد كرد. درحالي كه دوو تجهيزات بدون هسته را تهيه خواهد كرد. تعهد Va Tech Hydro شامل محرك‌هاي توربين درزگيري محور توربين، جهت‌ها و هدهاي روغن، دريچه‌ها، هسته‌هاي استاتور و سيم‌پيچي‌ها و قطب‌هاي رتور، جهت‌هاي تركيبي، تحريك، مقره‌ها و سيستم scada است. راه‌اندازي تجهيزات الكترومكانيكي در اوايل سال 2007 جزء اولين تعهدات است. مراحل نصب نيروگاه جذرو مد به حالت پيوسته‌اي به انجام خواهد رسيد. و چون محل كافي براي نگهداري وجود ندارد بخش‌هاي الكترومكانيكي و تجهيزات بايد به موقع تحويل داه شده باشد.
    بعلاوه Va Tech Hydro يك سري خدمات وسيعي ارايه خواهد داد. شامل نظارت بر ساخت بخش‌هايي كه بايد به دوو تحويل داده شود. نظارت بر قبل از نصب و بعد از نصب، نظارت بر انجام و ارايه سري آموزشي براي كارگذاري.
    ارزش اين قرارداد براي Va Tech Hydro تقريباً 75 ميليون يورو (93 ميليون دلار) است..
    علاوه بر دلايل جانبي و فوريت بي‌نهايت پروژه نيروگاه جزرو مد سيوا، برنامه‌ريزي شده تا براي سال 2009 كامل شده باشد.
    تيم پروژه يك تيم از متخصصان دوو،‌مهندسي سامان و Va Tech Hydro مسائل اقتصادي را محاسبه كردند و نهايتاً با امضاء اسناد قرارداد به نتيجه رسيدند.
    نيروگاه سيوا باب جديدي را در توسعه انرژي قابل تجديد محلي در كره جنوبي گشوده است. اين نيروگاه واردات نفت را تقريباً 860000 بشكه (43 ميليون دلار) كاهش خواهد داد. به همان خوبي سهمش را با ادامه گردش آب درياچه در ارتقاء كيفيت آب را به ارمغان خواهد آورد.
    اگر در مورد درياچه سيوا طبق برنامه ريزي پيش برويم، كيفيت زندگي مردم كره بهبود خواهد يافت و توسعه اقتصاد ملي آنها تامين مي‌شود با اين اعطاء (پاداش) Va Tech Hydro در محقق كردن بزرگترين نيروگاه جذرو مد دنيا موقعيت مهمي را به دست خواهد آورد. VTH قصد دارد براي شركت در پيشبرد ساخت نيروگاه‌هاي آبي بزرگ تلاش كندو درگير پروژه‌هاي مشابه شود براي چندين پروژه هنگفت در سواحل غربي شبكه جزيره كره و محل‌‌هاي مورد نظر تحقيقاتي به عمل آمده است كه براي توسعه قدرت جذرو مد هدف‌گذاري شده‌اند.

    قدرت جذرومد: گذشته، حال، آينده
    نيروگاه‌هاي جذرومد در اوايل دهه 1990 به وجود آمدند در آن زمان تنها يك مسير جذرو مد مورد استفاده بود. ماشين‌هاي جذرومد در قرن 18 ميلادي ساخته شده است. وقتي با ماشين‌هاي باد و چرخ‌هاي آبي رقابت شديدي داشتند. ماشين‌هاي جذرومدي با ورود موتورهاي بخار ارزان از صحنه بيرون رفته است. تعداد كمي درنواحي دوردست باقي ماندند. مهمترين آنها عبارتند از: لورانوس LARANCE) اولين و بزرگترين نيروگاه با كارايي mv240 براي توليد اقتصادي بروي دهانه ورودي در شمال غربي فرانسه بين سالهاي 1961-1967 ساخته شد. يك سد 75 متري (شامل دريچه‌ها، موتورخانه‌ها، سد متحرك و خاكريز) به يك آبگير 17 كيلومتر مربع را محصور كرد. نيروگاه جذر و مد 24 توربين كاپلان نوع لامپ الكتريك (bulb-type Kaplan turbines) با ظرفيت نامي mv10 براي هر كدام دارد.
    آناپوليس (Anapolis) دومين نيروگاه جزرومد اقتصادي كه در نيم كره غربي به كار گرفته شد. يك نيروگاه mv18 در آناپوليس رويال در ساحل نواسكاتيا (Nova scatia) در باي فاندي در كانادا (Bay of fundy) است كه در سال 1984 ساخته شد. اين پروژه ازيك سد كنترل شاري با يك توربين استافلو (Straflo) با ضخامت 5/7 متر استفاده مي‌كند.
    جاهاي ديگر: بقيه نيروگاه‌ها شامل واحد آزمايشي 400kw د ركيسلايا (kislaya Guna) ساخته شده 1968 در روسيه بر روي دريايي برنت (Barents) و ايستگاه 3.4mw جيانكسيا (jianxia) در چين كه بين سالهاي 1980 و 1986 ساخته شده است.
    از لحاظ فني، در اروپا منابع جذر و مدي فراواني در بريتانياي كبير در دسترس است. محلي در دهانه سورن در نوب غربي انگلستان، توانايي بالقوه GW8 را دارا است و در چندين زمينه مورد مطالعه قرار گرفته است. همچنين پتانسيل زيادي در جنوب فرانسه موجود است. در شبه جزيره كوتنيتن (Cotentin) در نورماندي (Normandy) محل‌هاي ديگري كه همه اين پتانسيل را دارند وجود دارند، در آرژانتين، شيلي،‌استراليا، كانادا، چين، هند، كره، روسيه با محدوده جزرومدي بين 5/4 و 5/11 متر تعدادي از اين محلها از مركز تقاضا دور هستند. بنابراين هر چند منابع قابل توجه با قيمت تجهيزات معقولي ارايه مي‌دهند، هم‌اكنون سهم توسعه ناچيزي در حال برايمان بعهده خواهند داشت.
    نيروگاه بيوماس
    استفاده از بيوماس به عنوان يك منبع انرژي به هزاران سال قبل برمي‌گردد چرا كه تا سال 1800 ميلادي منبع اصلي انرژي بوده است.
    بيوماس يك ماده حياتي از قبيل محصولات زراعي، چوبي و فضولات حيواني است. در حقيقت بيوماس شكلي از انرژي ذخيره شده خورشيدي است كه گياهان اين انرژي را از طريق فتوسنتز تامين مي‌كنند. انرژي بدست آمده از بيوماس بوسيله سوزاندن مستقيم، تبديل آن به انرژي غني گازها (تبديل كردن به گاز) حاصل مي‌شود كه اين مي‌تواند سوخت پيشرفته‌اي در توربينهاي گازي يا سلولهاي سوختي باشد. بوسيله تبديل كردن اين انرژي به سوختهاي مايع (بيوسوخت) مي‌توان از آن براي سوخت وسايل نقليه و ديگر تجهيزات برقي استفاده كرد. از طرف ديگر، بايد در سيستم‌هاي تركيبي برق و گرما و بيوماس‌هاي پيشرفته‌تر براي توليد برق به راندمان نهايي بيش از 80 درصد در توليد دست يابيم.
    از نقطه نظر محيطي سيستمهاي انرژي بيوماس به چند دليل مطلوب و جالب هستند:
    1- سوختن يا اشتعال بيوماس جو را خنثي مي‌كند كه در اين هنگام بيوماس اضافه شده دي‌اكسيد‌كربن را از اتمسفر پاك مي‌كند، اين عمل هنگامي صورت مي‌گيرد كه بيوماس مي‌سوزد و در اتمسفر آزاد مي‌شود. توليد سوختهاي مطمئن از بيوماس خطرات آلودگي را كاهش مي‌دهد. بعنوان مثال زمينهاي سرشار يا غني از گاز (عمدتاً متان) بر تغيير وضعيت آب و هوايي جهاني و تبديل فضولات حيواني به متان موثر خواهد بود.
    2- تركيب بيوماس با زغال‌سنگ در نيروگاههاي زغال‌سنگ مي‌تواند آلودگي‌هاي خروجي را كاهش دهد.
    3- رشد روزافزون و دائمي سوختهاي بيوماس وابسته به محصولات زراعي كاشته شده در سراشيبي،‌ خاكهاي مستعد و كناره‌ها در طول راه‌هاي آبي است كه مي‌تواند از تشكيل لجن در سطح آب و جاري شدن كودهاي شيميايي كشاورزي جلوگيري كند.
    سيستمهاي انرژي بيوماس بايد براي توليد برق مورد مطالعه قرار گيرند بخصوص هنگام حرارت دادن فضولات در توليد برق براي كاربرد در فرآيندهاي صنعتي يا تركيب حرارت و برق، انرژي بيوماس بيشتر از منابعي نظير ضايعات چوب درختان، تفاله كارخانه‌ها، پس‌ماند محصولات زراعي يا زمين‌هايي سرشار از متان قابل استفاده است.
    در آمريكا دولت مركزي اين كشور تسهيلات يا امكانات لازم را براي كمك در كاربرد انرژي بيوماس از ميان برنامه‌هاي تازه كه شامل اين انرژي است در نظر گرفته كه اين خود سودي ارزشمند براي شركتهاي توليد برق است.




    كاربرد انرژي بيوماس:
    بيوماس مي‌تواند به عنوان يك منبع انرژي در يكي از راه‌هايي كه در ذيل آمده است بكار رود:
    Co-firing: اضافه كردن درصد كمي از بيوماس به سوخت تهيه شده براي نيروگاه زغال سنگ (اين عمل كوفايرينگ نام‌گذاري شده است)، آسانترين راه براي افزايش كاربرد بيوماس در توليدب برق است. در حال حاضر نحوه كاركرد 6 نيروگاه در ايالات متحده كوفايرينگ بيش از 15 درصد از سوخت تركيبي (حرارت و برق) است كه اغلب آنها از ضايعات چوب استفاده مي‌كنند. از طرف ديگر كوفايرينگ در بيوماس 40 درصد مي‌تواند جانشيني براي سوخت زغال‌سنگ در يك نيروگاه زغال‌سوز باشد.
    طبق برنامه DOE اگر چه در كشورهايي كه نيروگاه‌هايي با سوخت زغال‌سنگ دارند يك ظرفيت 310GW دارند اما بيوماس تا سال 2020 بايد 20GW تا 30GW انرژي توليد كند.

    اشتعال مستقيم:
    اشتعال مستقيم بيوماس هم‌اكنون به طور وسيع در صنايع بخصوص مورد استفاده قرار مي‌گيرد كه اين صنايع شامل كارخانه الوار، اسباب و اثاثيه، كارخانه‌هاي آسياب‌كننده و كارخانه‌هاي شكر است.
    در يك اشتعال مستقيم به شكلي عملي، بيوماس معمولاً در يك بويلر بزرگ براي توليد بخار مي‌سوزد كه نتيجه اين عمل سيكل رانكين است. اين مورد شبيه فرآيند مورد استفاده در نيروگاههاي زغال‌سوز است. با اين تفاوت كه در كاركرد تجهيزات سوخت متفاوت هستند. نيروگاههاي اشتعال مستقيم اغلب كوچك بوده و عملكرد بازده آنها حدود 20 درصد است.

    مبدل گاز:
    تبديل كردن به گاز سريع‌تر و اثربخش‌تر از سوختن بيوماس است و يك روش پاك در استخراج انرژي حرارتي خواهد بود. در اين فرآيند بيوماس در يك محيط بدون اكسيژن گرم شده و به شكل مواد آلي درمي‌آيد. در حال حاضر در گرونيگن هلند يك سيستم تصفيه بيوماس استفاده مي‌شود كه اجزا جامد زباله‌هاي شهري را براي توليد 25MW برق تصفيه مي‌كند.

    زيست سوخت:
    زيست‌سوخت آخرين روش براي تبديل بيوماس به انرژي قابل استفاده در توليد سوخت از مواد آلي است زيست‌سوختها توسط DOE تعريف شده‌اند كه آنها شامل الكلها، اترها، استرها و ديگر مواد شيميايي ساخته شده از بيوماس هستند.
    از آنجاكه زيست‌سوختها براي توليد الكتريسيته سوزانده مي‌شوند اما بيشتر توجه به آنها براي كاربرد در حمل و نقل است (بخصوص اتانول و بيوديزل).
    بيش از 5/1 بيليون گالن (57 ميليون ليتر) اتانول از بيوماس بدست مي‌آيد كه يك فرآيند تخمير هر ساله به بنزين اضافه مي‌شود كه اين عمل در بهبود عملكرد وسايل نقليه و كاهش آلودگي موثر خواهد بود.
    الكل‌ها معمولاً با معيار 10 درصد در تركيب با بنزين بكار مي‌روند از طرف ديگر بيوديزل از روغن‌هاي گياهي و چربي‌هاي حيواني ساخته مي‌شوند. تقريباً 30 ميليون گالن (1135 ميليون ليتر) بيوديزل سالانه در ايالات متحده توليد شده كه معمولاً با معيار 20 درصد در تركيب با ديزل سوخت بكار مي‌رود.

    بيوگاز:
    بيوگاز بعنوان يك سوخت با راندمان بالا در توربين گازي بكار مي‌رود. سيستمهاي چرخه تركيبي تبديل گاز (GCC) شامل يك سيكل بالاي توربين گاز، يك سيكل پايين توربين بخار براي رسيدن به بازده نزديك به دو برابر اشتعال مستقيم در آنها است.

    تصفيه بي‌هوازي: روش ديگر براي توليد انرژي از بيوماس استفاده از تصفيه بي‌هوازي مواد آلي براي توليد متان است كه مي‌تواند بعنوان سوخت مورد استفاده قرار مي‌گيرد. از تصفيه بي‌هوازي براي توليد متان از فاضلاب شهري، كارخانه‌ها، كود حيوانات و ديگر مواد استفاده مي‌كنند.

    نيروگاههاي بيوماس:
    نيروگاههاي بيوماس براي افزايش بازده و كم كردن هزينه توليد برق از سوختهايي مانند چوب استفاده مي‌كنند. در اينجا نظريه جديد توليد قدرت الكتريكي (برق) را با تاكيد بر به چالش دعوت كردن (خواستن) مهندسان بوسيله توربين گازي نشان خواهيم داد.

    دليل منطقي نيروگاه بيوماس:
    بيشتر تلاش‌ها و خواستهاي جهاني و بسياري از روش‌هاي اقتصادي براي استفاده و هدايت بيوماس در مسير توليد الكتريسيته (برق) است. هم‌اكنون مقدار برق توليدي از بيوماس كم است و وابسته به منابع قابل دسترس بيوماس است. اگر چنين انتظاري در استفاده از بيوماس (توليد برق) وجود دارد و از طرف ديگر نيز منابع عظيم بيوماس براي سوخت اين نيروگاهها وجود دارد پس چرا ما نبايد به سرعت در توسعه اين صنعت كوشا نباشيم.
    اولاً هر نيروگاه بيوماس برنامه‌ريزي شده با ديگر روشهاي توليد برق رقابت مي‌كند كه در بيشتر موارد تنها روش ديگري كه تامين‌كننده قدرت الكتريكي است استفاده از نيروگاه سوخت فسيلي است. تامين قدرت الكتريكي (برق) توسط يك نيروگاه سوخت فسيلي اقتصادي است چرا كه اين نيروگاه‌ها به دليل قابل اعتماد بودن آنها اقتصادي هستند. جديد‌ترين تكنولوژي كاربرد اين نيروگاهها (مثلاً توربين گازي مركب با سيكل بخار) است و آنها به طور نسبي سريع نصب مي شوند و ساختمان آنها نيز در دو مقياس كوچك وبزرگ است كه اين نيروگاهها از نقطه‌نظر تامين سرمايه ملي معروف هستند، در حال حاضر سوختهاي فسيلي فراوان و در دسترس بوده و با يك قيمت معقول در قسمتهاي زيادي از دنيا وجود دارند. ثانياً نيروگاههاي بيوماس كم‌تر متكي به نحوه تكنولوژي بويلر توربين بخار هستند. ديگر دلايل شامل داشتن قيمت نصب بالا به ازاء هر كيلووات با توجه به منابع سوخت بزرگتر كه دستي‌تر از سوختهاي فسيلي هستند. (خصوصاً نسبت به نفت و گاز طبيعي كه به شكل جامد نيستند)

    دلايل عمده در توجه به ساختار انرژي بيوماس عبارتند از:
    1- دسترسي به پس‌ماندهاي بيوماس در جهت توليد تركيبي برق و حرارت
    2- توليد برق از منابع غني و طبيعي بيوماس
    3- توليد توان براي مكانهاي دور از دسترس منابع بيوماس
    4- تجديد‌پذير بودن اين نوع انرژي
    تجديد‌پذير بودن در كاربردهاي زيادي مورد استفاده قرار گرفته است. مثلاً‌طي يك برآوردي كه در ايالات متحده صورت گرفته امكان توليد 600MWe انرژي از چوب بر اساس ظرفيت توليد ممكن خواهد بود. ميزان توان توليدي از منابع بيوماس بسيار زياد است خصوصاً با توجه به بازار جهاني (از منظر عرضه و تقاضاي انرژي)، اما عملاً‌اين منابع تجديد‌پذير كمتر مورد استفاده قرار گرفته و به نسل جديدي از نيروگاههاي بيوماس نياز دارند.

    مسير فني توليد الكتريسته (برق) از بيوماس
    روشهاي متعددي هنگام انتخاب يك مسير در توليد الكتريسيته از بيوماس وجود دارد.
    سيال هواي تحت فشار همراه با تزريق سوخت از يك واحد اندازه‌گيري و تنظيم فشار به رآكتور تحت فشار دميده مي‌شود. هواي مورد نياز براي راكتور از يك كمپرسور كمكي در چرخش از مرحله آخر كمپرسور توربين تغذيه مي‌شود كه در نهايت توسط ژنراتور متصل به شناخت خروجي توربين گاز برق توليد مي‌شود. در صورت مطلوب بودن مي‌توان يك توليد‌كننده بخار بازياب (ديگ بخار بازتاب) اضافه شود. پروژه كرچ (كرچ نام شخصي است كه بعداً اين سيستم به نام سيستم كرچ شناخته شد). از امكان وجود يك نيروگاه عملي از بيوماس (بجز بخش (HRSG كه در ربع چهارم از سال 1998 عملي شده بود را ارايه مي‌دهد.
    از طرف ديگر قبل از اينكه اين واحد نيروگاهي پيشنهادي براي فروش انرژي الكتريكي داشته باشد مستلزم ساعات زيادي آزمايش خواهد بود. اين مسير يك روش اميد‌بخش براي هزينه موثر توليد الكتريسيته از تنوع زياد مواد آلي بيوماس است. امتياز اين سيستم بازده بالاي ترموديناميكي سيكل برايتول بيش از سيكل رانكين است.
    گامز اولين كسي بود كه نظريه تركيبي مبدل گاز تحت فشار با موتور توربين گاز را شرح داد. البته گامز قبلاً نيز به مفهوم اين كار ارزشمند اشاره‌هايي كرده بود. او همچنين پي‌برد كه اين تركيب مسلماً در پيشرفت آينده‌ پاكسازي گازداغ تحت فشار براي جلوگيري از هواي بيش از حد پره‌هاي توربين موثر خواهد بود.
    او همچنين به نيروگاه زغال‌سنگ نيز اشاره‌هايي كرده بودكه اين مفهوم شبيه وقتي است كه از بيوماس به عنوان سوخت استفاده مي‌شود. اخيراً نيز نظريه‌هايي مشابه نظريه فوق در حال گسترش هستند كه از بيوماس به عنوان سوخت استفاده مي‌كنند. مثلاً‌در هاوايي سال 1997، سوئد سال 1993، مينه سوتا 1995، اروپا و ديگر مناطق جهان، سيستم كرچ در فشار ماكزيمم (1353 Kpa) 13.8atm با يك تغذيه 2.2 تني از چوب درهر ساعت و يك مبدل گاز با دماي زير 730 درجه سانتي‌گراد (1346 درجه فارنهايت) كار مي‌كند. اين گاز در همين دما يا زير اين دما براي حفظ انرژي محسوس نگهداري شده و از چگالش جرم جلوگيري مي‌كند. در اين حالت ذرات جامد بوسيله سيستم پاك‌ساز گاز داغ خشك از گاز برداشته شده و سپس اين گاز مستقيماً به محفظه احتراق موتور توربين گاز فرستاده مي‌شود.
    مسير فوق چندين مزاياي درخور توجه دارد چرا كه انرژي محسوس گاز به نگهداري بازدهي كل سيستم كمك شاياني مي‌كند. تميز‌كننده‌هاي نمناك مورد استفاده نبود و لذا ضايعات آب در اين قسمت وجود ندارد. جرم در حالت بخار باقي مانده و ازمسائل خوردگي و چسبندگي جلوگيري مي‌كند و از طرف ديگر انرژي شيميايي حاوي اين جرم هنگامي‌كه بخار داغي از جرم فوق مي‌سوزد بازيافت مي‌شود.
    در اينجا هيچ كاتاليزور و يادماي بالاتري براي نابودي جرم فوق قبل از احتراق لازم نيست. عمل تحت فشار قرار دادن ميزان گرماي بالاتري به ازاء مربع مساحت راكتور ممكن خواهد ساخت كه كاهش اندازه سيستم پاكساز گاز داغ و اجراء مورد نياز تراكم گاز، قبل از تزريق آن به توربين گازي را به دنبال خواهد داشت. مبدل گاز انتخابي به طور غيرمستقيم اشكال اين سيستم را كاهش مي‌دهد. در اينجا براي سيال هيچ بخاري لازم نيست و مينيمم بخار بكار رفته تلفات گرماي نهان را پايين مي‌آورد.

    موانعي براي پيشرفت در اين مسير وجود دارند كه شاخص‌‌ترين آنها عبارتند از:
    تزريق بيوماس به ظرف بخار، سيستم پاك‌ساز گاز داغ، بازده كم در دماهاي پايين مبدل گاز،‌بخارهاي قليايي در سوخت گاز و سوخت موتور توربين همراه با انرژي كمي از گاز داغ، اينها موانع پيشرفت در مسيرنيروگاههاي بيوماس هستند.

    اصطلاحات موتور توربين گاز:
    با اين وجود اولين تست احتراق توربين گاز توسط توربيني به نام اسپارتان با خروجي 22KW و نسبت فشار 4 انجام گرفت. پكيج ژنراتور توربين گاز نشان داده شده در شكل براي اقتصادي بودن سوخت سيستم و تغييرات اصلاحي كبماستور و تست‌هاي بعدي در نظر گرفته شده است.
    اولين چالش مهم براي چيره شدن در ساخت اين نوع نيروگاهها طراحي سيستم احتراق و سوخت توربين گازي و اشتعال گاز LCV است. مهمترين چالشها در طراحي سيستم احتراق و سوخت توربين گازي عبارتند از: 1- توربين گازي تايفون براي عملكرد 5mj/scm گاز در تزريق سوخت بادرجه حرارت 400 درجه سانتي‌گراد (752 درجه فارنهايت) طراحي شده است. 2- برنامه وستينگهاوس براي سوخت يك توربين گازي 25IB12 با (134 Btu/scm)5mj/scm گاز LCV در تزريق سوخت با دماي 550 درجه سانتي‌گراد (1022 درجه فارنهايت) است. (Stambler.1997)
    3- برنامه‌هاي كرچ براي سوخت
    تعديلي توربين اسپارتان با
    (134 Btu/scm)5mj/scm گاز LCV در يك تزريق سوخت با دماي 700 درجه سانتي‌گراد (1291 درجه فارنهايت)

    سيستم تزريق و تحويل گاز LCV
    يكي از چالشهاي مهم مهندسي در اين زمينه طراحي يك سيستم تزريق و تحويل گاز سوخت كه بتواند در دماي بالاي گاز LCV كار كند. البته دراينجا بايد توجه خود را در انتخاب والوها و مواردي كه بتواند فشار و دماي بالا را تحمل كند نيز معطوف ساخت.
    سوييچ On/Off يا والو قفل شونده نشان داده شده در شكل 1 هنگامي بسته مي‌شود كه:
    1- شافت توربين با سرعت زياد
    (over speed) كار كند.
    2- درجه حرارت بالاي گاز
    3- خاموشي (shut down) اضطراري درواحد
    از طرف ديگر والو كنترل سوخت گاز مرتبط با سرعت شافت توربين است يعني اين والو در دمايي عمل مي‌كند كه جريان سوخت سرعت شافت را بالاتراز توان كلي ژنراتور نگه دارد.
    در اينجا داده‌هاي كرچ طبق عملكرد تكنيكي و چگونگي موثر بودن والوها جمع‌آوري شده بود.

    احتراق گاز LCV:
    اسپارتان توربيني كوچك است كه سوخت آن توسط گاز LCV تامين مي‌شود.
    با وجود اين ممكن است كه سوخت اين توربين كوچك توسط محفظه احتراقي كوچك محدود شود. كرچ چندين پارامتر را هنگام طراحي محفظه احتراق جهت اشتعال گاز LCV بررسي كرد. يكي از مهم‌ترين پارامتر‌ها افت فشار كمباستور است، كه منظور نگهداري و كمك به پايداري اشتعال با يك افت فشار كمباستور به ميزان تقريبي 4درصد است.
    روش معمولي براي شروع و استارت واحد استفاده از سوخت ديزل است. اولين تست راه‌اندازي تحت شرايط بي‌باري (noload) انجام مي‌گيرد. گاز LCV بتدريج به كمباستور فرستاده مي‌شود و سپس سوخت ديزل رفته‌رفته كاهش مي‌يابد، انتظار مي‌رود كه دريچه سوخت ديزل كاملاً بسته شود
    (SHOUT OFF) و توربين كاملاً با گاز LCV كار كند.
    هنگامي كه اشتعال پايدار تحت شرايط بي‌باري با صددرصد از گاز LCV رخ مي‌دهد. فرآيند مكرر زير بتدريج بارداري را افزايش مي‌دهد تا اينكه بار صددرصد از گاز LCV تامين شود از طرف ديگر به كمك سيستم احتراق و تحويل سوخت كه در حال عملكرد عادي هستند در مرحله بعد يك تست 100 ساعته جهت كاهش تاثيرات زيان‌بخش جدي كه ناشي از ذرات جامد ومواد قليايي احتمالي بر روي پره‌هاي توربين است انجام مي‌گيرد.
    سيستم مبدل گاز به شكلي طراحي شده است كه مواد قليايي (قلياها) به شكل جامد باقي مانده و به كمك فيلتر از سيستم خارج مي شوند.
    سيستم صافي (Filtration) گاز داغ جهت برداشتن موثر ومناسب‌تر مواد بخصوص در محافظت از پره‌هاي توربين پيش‌بيني شده است.
    وقتي كه عملكرد مناسب اين نيروگاه در يك دوره زماني كوتاه اثبات شود آنگاه طرح و برنامه‌هاي كرچ به مكاني براي تداوم بلند‌مدت و آزمايش قابليت اطمينان منتقل خواهد شد انجام موفقيت‌آميز و گسترش اين گونه برنامه‌هاي دور انديشانه مسلماً توليد جديدي از نيروگاههاي بيوماس با مقياس كوچك را جهت نزديكي به واقعيت تكنيكي، اقتصادي و بازرگاني به همراه خواهد داشت.
    انرژي باد
    در احداث نيروگاه بادي پيدا كردن محل سايت عامل بسيار مهمي است تا حداكثر بهره برداري را از نيروي باد بدست آورد.
    اطلاعات اوليه براي احداث نيروگاه بادي بينالود توسط ايستگاه هواشناسي حسين آباد آغاز گرديد و كارهاي مقدماتي آن از سال 74 شروع شد. اطلاعات بدست آمده از ايستگاه در اختيار مهندسين قرار داده شد و پس از مطالعات فراوان سر انجام محل فعلي براي احداث انتخاب گرديد.
    تونل بادي كه در اين منطقه وجود دارد از امام تقي آغاز و تا كوير سبزوار ادامه دارد و محل احداث نيروگاه در دهانه اين تونل است و بيشترين بهره برداري را از نيروي باد ميكند.
    نكته مهم بعدي پس از انتخاب محل نحوه چيدمان واحدها است تا بتوان حداكثر استفاده را از نيروي باد كرد. از چندين طرح ارائه شده سرانجام چيدمان 10×6 انخاب گرديد.
    در فاز اول 43 واحد از 60 واحد با يستي به بهره برداري برسد. قدرت هر واحد 660 ولت است. از 43 واحد فوق 5 واحد از خرداد 83 به بهره برداري رسيده و مابقي در حال نصب و راه اندازي است. واحدها با مشاركت ايران و چند كشور خارجي از جمله آلمان و دانمارك به بهره برداري رسيده به طوري كه 60 درصد توليد داخل و 40 درصد توليد خارج است.
    كل برق توليد شده توسط واحها توسط كابل به پست (132/20) برده ميشود و توسط آن به شبكه اصلي منتقل ميگردد.
    خروجي هر واحد 600 وتوسط ترانسفورماتورهاي مجزا به 20000 تبديل ميگردد.
    در سطح سايتهاي شناخته شده در سطح جهان دو سايت متمايز وجود دارد: سايت آلتامونت پاس كاليفرنيا كه بيش از 7000 توربين دارد و حدود 2 مگا ولت انرژي توليد ميكند و ديگري سايت بينالود. وجه تمايز اين دو سايت در اين است كه در تابستان بيشتر باد مي آيد و در نتيجه توليدي اين دو سايت در تابستان كه پيك مصرف است پيك توليد هم است.
    يك واحد خود از 4 قسمت اصلي تشكيل شده است:
    1- امبيدر سيلندر (سيلندر مدنون)
    2- برج (تهتاني و فوقاني)
    3- نافل (ماشين فونه)
    4- نويز كون (دماغه)
    ژنراتور نيروگاههاي بادي از نوع آسنكرون ميباشند.
    در ژنراتور آسنكرون بر خلاف سنكرون لغزش ميتواند بين 3 تا 5 درصد باشد و در كار ژنراتور اختلالي بوجود نياورد.
    ولي نكته مهم در اينجا انژي بسيار متغيير باد است كه دائما در حال تغيير است و متناسب با آن دور تغيير ميكند. لغزش مجاز اين ژنراتورها 10 درصد است.
    براي كارآيي بهتر لازم است تا ولتاژ القايي در روتور ثابت نگه داشته شود براي اين كار از سه مقومت متغيير 1 اهمي استفاده ميشود به طوري كه اين مقومتها روي هر فاز قرار ميگيرند و توسط يك مدار كنترلي بطور اتومات تغيير ميكنند.
    براي انتقال انرژي باد به ژنراتور از مين گيربكس استفاده ميگردد.
    عموما توربين هاي بادي از لحاظ دور به سه دسته تقسيم ميشوند:
    1- دور ثابت
    2- دور متغيير
    3- دو دوره
    توربين هاي اين نيروگاه از نوع دور ثابت هستند.
    دور پره 28 دور در دقيقه و دور ژنراتور 1600 دور در دقيقه است. گيربكس طوري طراحي گرديده است كه ورودي آن متغيير ولي خروجي آن ثابت باشد.
    اگر باد از مقدار معيني بيشتر گردد توليد برق بطور اتومات قطع ميگردد بطوري كه اگر سرعت باد 5 متر در ثانيه باشد توليد شروع ميگردد و در 16 متر بر ثانيه توليد حداكثر است و نهايتا در 25 متر در ثانيه توليد بطور اتومات قطع ميگردد تا به اجزا واحد آسيب نرسد.
    البته شرايط بالا با شرط ايزو ميباشند (فشار 1 اتمسفر و دماي 25 درجه) و در جوي سايت بينالود ( 1550 متر ارتفاع از سطح دريا) فول توليد در سرعت 14 متر در ثانيه بدست مي آيد.
    شرايط راه اندازي و توليد:
    در زمان راه اندازي ژنراتور ابتدا بصورت موتور به را مي افتد و تا زماني كه سرعت آن به سنكرون برسد ادامه دارد. در اين زمان تغذيه موتور قطع ميگردد و به صورت ژنراتور به كار خود ادامه ميدهد.
    پره ها:
    پره ها طوري طراحي شده اند كه بطور اتومات تا 90 درجه تغييرپيدا ميكنند (پيچ كنترل)
    كلا براي توقف و ترمز واحدها دو روش وجود دارد:
    1- در نوك پره ها پره اي ديگر موجود است (پره آيروديناميكي) كه از نوك پره اصلي فاصله دارد و تغيير حالت آن موجب توقف پره هاي اصلي ميگردد ( ترمز ديناميكي)
    2- پيچ كنترل: در اين سيستم تمام پره تغيير وضعيت ميدهد و نسبت به روش قبلي مدرنتر است. براي بهره برداي كامل پره طوري قرار ميگيرد كه بيشترين سطح تماس را باد داشته باشد و همچنين در مواقعي كه طوفان است و يا به خاطر سرويس نباي واحد به كار خود ادامه دهد پره ها طوري قرار ميگيرند كه كمترين سطح تماس را باد داشته باشند.
    در نيروگاههاي بادي بر خلاف نيروگاه گازي انژي ورودي در اختيار ما نيست بلكه براي كنترل شرايط بايستي از وضعيت پره ها استفادده كنيم.
    اتاقك يا ژنراتور ميتواند 360 درجه به دور خود گردش كند و كابل ارتباط دهنده آن طوري است كه ميتواند تا 4 دور به دور خود بپيچد و پس از آن بطور اتومات باز ميگردد.
    تمام فرمانهاي اجرايي به واحد توسط واحد كنترلي كوچكي كه در بالاي اتاقك است انجام ميگيرد و از سنسورهاي مختلفي تشكيل شده است و پارامترهاي مختلف را تحت كنترل دارند.
    در هنگام طوفان كه سرعت باد بسار زياد است واحد كنترل به ياو موتورها فرمان داده و آنها با چرخش ژنراتور به حول خود باعث ميشوند تا ژنراتور در حالت پشت به باد قرار گيرد و از طوفان در امان باشد.
    تمام قسمتهاي كنترلي به صورت اتومات انجام ميگردد و اپراتور فقط بر كاركرد قسمتها نظارت دارد و تمام اطلاعات به طور لحظه اي ثبت ميگردد و در حافظه كامپيوتر ذخيره ميگردد.
    تغيير دور ژنراتور بين 1500 تا 1650 دور است و تغيير دور پره بين بين 28 تا 30 دور است.
    طول پره ها 23.5 و طول برج 40 متر است و وزن هر پره 1.5 و وزن برج 40 وناسل 21 تن است.
    ارسالي توسط
    [فقط كاربران سايت قادر به مشاهده ي لينك ها ميباشند . ]

    بهره‌وري از انرژي باد در دهه گذشته، پيشرفت چشمگيري در كشورهاي جهان داشته است. به گونه‌اي كه باور آن دشوار است. به طور نمونه در آغاز دهه 90 ميلادي در كشور آلمان، تواني برابر با 20 مگاوات نصب شد و با گذشت اين دهه به 4445 مگاوات رسيد، به سخني ديگر به تواني بيش از دويست برابر بالغ شد. در سرتاسر اروپا همانند اين جهش ديناميكي و شكوفايي در زمينه انرژي باد را مي‌تواند مشاهده كرد.
    نمونه ديگر، كشور اسپانيا است كه توان نصب شده آن به بيش از 2000 مگاوات رسيده و آن‌گونه كه پيش‌بيني مي‌شود، شايد در چند سال آينده بتواند آلمان را در اين زمينه پشت‌سر گذارد. شتاب اين گام مديون فن‌آوري بهبود يافته و افزايش نرخ بهره‌وري آن است. تنها با گذشت 10 سال ميزان توان نصب شده هر واحد شش برابر افزايش يافته است. (از 155 كيلووات به 935 كيلووات) ليكن مرز گسترش بالاتري را نمي‌توان براي سالهاي ديگر برآورد كرد. امروزه يك توربين بادي 5 مگاواتي با قطر پره روتور برابر 100 متر درحوزه فراساحل (Offshore) مقياس تازه‌اي را خواهد داشت. ميزان فروش توربين‌هاي بادي در سال 1999 در آلمان به بيش از 6/1 ميليارد يورو رسيده است.
    بر اساس مقررات مناسب كشور آلمان و پشتيباني از گسترش برنامه نصب توربين‌هاي بادي، پيشرفت در اين زمينه در دهه گذشته شايان ذكر است. كارگاه‌هاي كوچك در «باراندازها» دست به كار ساخت توربين و تجهيزات مربوط به آن زدند و از اين راه سود سرشاري را نصيب خود كردند. آنها نه تنها از كمك و ياري برنامه‌هاي دولتي بهره‌ نجستند، بلكه به توسعه و گسترش علمي و فني نيز دست يافتند. در نتيجه اين تلاش به پژوهشهاي كاربردي همراه با موفقيت اقتصادي و ورود به بازار جهاني انرژي را مي‌توان نام برد. پژوهش و برنامه‌هاي توسعه توربين‌هاي بادي در محدوده مگاواتي، مرهون تلاش دهه 80 پژوهشگران است كه به دنبال آن بازاريابي و رقابت آغاز شد ولي نتوانستند به توليد انبوه برسند، در آن سالها نيز پيشرفت چنداني در ديگر كشورها محسوس نيست و با وجود برخورداري از كمك‌هاي دولتي نتوانستند به مقام شايسته‌اي دست يابند. براي نمونه كشورهاي فرانسه و انگلستان را نام مي‌بريم كه در اثر محدوديتهاي قانوني، سازندگان و كارخانجات توربين‌هاي بادي چندان رغبتي از خودنشان ندادند. برعكس در كشورهاي آلمان، اسپانيا ودانمارك كه مقررات بهتري را به تصويب رسانده بودند، تشويق سرمايه‌گذاران و سازندگان را فراهم ساختند،‌ جاي شگفتي نيست كه 95 درصد سازندگان توربين‌ بادي در اين سه كشور وجود دارد.

    گسترش فن‌آوري توربين بادي
    گسترش امروزي توربين‌هاي بادي بر اساس همان روش مربوط به 25 سال پيش است، يعني بر اساس نظريه و عقيده متخصصان فن و سياستگزاري براي ساخت دستگاه‌هاي چند مگاواتي بصورت سري‌سازي و توليد انبوه در كشور‌هاي آلمان و دانمارك، ساخت توربين‌هاي 50 كيلوواتي و رقابت در بازار فروش را آغاز كردند. امروزه ساخت دستگاه‌هاي 5/1 تا 5/2 مگاواتي در آلمان، امري عادي است و 50 درصد سهم بازار فروش را به خود اختصاص داده است. در حوزه فراساحلي، توان دستگاه تا 5 مگاوات در دست ساخت است.
    طرح نخستين توربين بر اساس پيشنهاد سازندگان دانماركي و محدوديت توان نامي توربين در اثر برخورد هوا و وزش باد به پره‌هاي روتور و وصل مستقيم به ژنراتور آسنكرون به شبكه برق است كه طرحي ساده و كمترين اختلال را در بر دارد. شبيه اين طرح در كاليفرنيا نيز به كار رفته است.
    با موفقيت در اين طرح، ساخت توربين بادي بدون هيچ گونه تغيير ادامه يافت و امروز در محدوده چند مگاواتي يك نوع فن‌آوري كاربردي به حساب مي‌آيد. با وجود تجربيات منفي و اصول تنظيم پره‌هاي روتور در يكي از توربين‌هاي نصب شده در دانمارك، توانستند قطر پره‌ها در محدوده چند مگاواتي را در حدود 60 متر نگه دارند.
    در واقع بخش تنظيم پره‌هاي روتور در تاسيسات توربين‌هاي بادي بزرگ تكامل يافته به آرامي كاهش يافته است و با دستاوردهاي فني بر آن مسلط شده‌اند زيرا نيمرخ (پروفيل) پره‌ها و زواياي آن و بار ايروديناميكي بر روي آنها، مورد پژوهش و بررسي قرار گرفته‌اند.

    گسترش بازاريابي در آلمان، اروپا و ديگر كشورهاي جهان
    در ده سال گذشته بازار انرژي باد به طرز بي‌‌سابقه‌اي گسترش يافت به ويژه تعداد توربين‌هاي بادي نصب شده در آلمان را بايد ذكر كرد. در سال 1990 در حدود 30 مگاوات در فدرال آلمان نصب شد و در پايان 1999 به 4500 مگاوات رسيد (150 برابر شد). تنها در سال 1999 با 1568 مگاوات بيش از يك سوم مجموع توربين‌هاي موجود، نصب شد.
    در سال 1999 وزير محيط‌زيست ايالت ساكن سفلي اظهار كرد كه درسال 2000 ميلادي هدف حداقل نصب 8000 دستگاه توربين‌ بادي با توان 1000 مگاوات است. در پايان سال 1999 نه تنها به اين هدف نزديك شدند. بلكه با 1204 مگاوات از مرز خواسته شده گذشتند. به دليل رشد سريع آن با تعداد 2124 دستگاه توربين بادي، فقط در حدود يك چهارم تعداد پيش‌بيني شده، نصب شد. در سال 1999 بيش از 6/1 ميليارد يورو توربين بادي به فروش رفت و در اين راستا به طور مستقيم و غيرمستقيم بيش از 50000 نفر به كار مشغول شدند. به موازات آلمان، اسپانيا به صورت يك سازنده قوي در زمينه گسترش انرژي بادي شكل گرفت. اكنون با توان نصب شده اي برابر با 2000 مگاوات ورشد ساليانه‌اي بيش از 1000 مگاوات در آينده به عنوان نخستين سازنده توربين بادي توانست‌ جاي خود را بگيرد.
    با توجه به گستردگي نقاط مسكوني و كم‌جمعيت و سرعت زياد باد، ساختاري شبيه به دانمارك و آلمان را به خود اختصاص مي‌دهد. سازندگان محلي، پژوهشگران و كاربران اسپانيايي همگي ساختار يك بازار توليد و مصرف را تشكيل مي‌دهند.
    روز به روز كشورهاي بيشتري نسبت به بهره‌برداري از توربين‌هاي بادي علاقه‌مندي نشان مي‌دهند، به گونه‌اي كه تعداد آنها از ارقام پيش‌بيني شده فزوني مي‌گيرد. در حال حاضر تواني در حدود 45000 مگاوات را مي‌توان برشمرد كه بيشترين رقم آن مربوط به اروپا است و براي سال 2004 ميلادي تواني برابر با 35000 مگاوات قابل پيش‌بيني است. امروز در سرتاسر جهان در حدود 13900 مگاوات به دليل رشد انرژي بادي در سال 1999 به بيش از 3900 مگاوات رسيد و نسبت به سال 1998 رشدي برابر با 50 درصد را نشان مي‌دهد. بزرگترين سهم آن مربوط به كشورهاي اروپايي با 3200 مگاوات و سهم آلمان برابر با 1600 مگاوات مي‌شود. بازارهاي جديد در اروپا و كشور تركيه است ونياز آنها به نيروگاه جديد در 25 سال آينده به 7000 مگاوات خواهد رسيد. توانمندي بزرگ گسترش و توسعه در بهره‌وري از انرژي باد نيز در كشورهاي آمريكاي جنوبي است براي نمونه كشور برزيل داراي بهترين شرايط با دو شبكه كامل برق به منظور استفاده گسترده و زمينه‌هاي اقتصادي است. بايد دانست كه در سرتاسر جهان، انرژي باد مراحل اوليه تكامل را طي مي‌كند و در آينده نه تنها در انرژي فسيلي صرفه‌جويي خواهد شد، بلكه محيط‌زيست در برابر مواد زيانبار و آلاينده حفظ مي‌شود و كشورهايي كه نياز مبرمي به برق دارند برق آنها تامين مي‌شود و نيروي انساني بيشتري را به خدمت مي‌گمارد.


    شرايط لازم براي تكامل انرژي باد
    چنانچه تكامل انرژي باد در تك‌تك كشورها دقيقاً بررسي شود، مي‌توان به جرات گفت كه براي موفقيت موضوع باد كمتر مورد توجه قرار گرفته تا تصويب قوانين و مقررات دست و پا گير و رعايت تشريفات اداري.
    در هر جا كه قوانين شبكه تامين برق مطرح بوده است انرژي باد به گونه جهشي گسترش يافته است (براي نمونه كشورهاي دانمارك، آلمان و اسپانيا) ليكن در جايي كه موضوع برگزاري مناقصه حاكم است به انرژي باد علاقه‌اي نشان داده نشده و در نتيجه كارخانجات داخلي نتوانستند گسترش يابند و حتي از ساخت تجهيزات دست كشيدند (براي نمونه: فرانسه، هلند و انگلستان) شرايط و مقررات بهره‌وري از انرژي باد در آلمان به گونه بهتري تنظيم شده است. بر اساس قوانين انرژيهاي نو گسترش انرژي باد تضمين شده است (از لحاظ محل ساخت تجهيزات مربوطه و محل نصب توربين‌هاي بادي).

    تكامل آينده انرژي باد
    تكامل آينده انرژي باد مي‌تواند در سه بخش مورد توجه قرار گيرد: نخست فرصت و امكانات گسترش استفاده از انرژي باد در جهان و ديگري نصب توربين‌هاي بادي در فراساحل و مهمتر از همه، پژوهش‌هاي لازم در زمينه اين انرژي نو كه در بهبود اقتصادي كشورها تاثير فراواني دارد.

    تكامل در سرتاسر جهان
    بازارهايي مانند آلمان، دانمارك، اسپانيا و اخيراً ايالات متحده آمريكا كه در راستاي بهره‌برداري از انرژي باد گام نهاده‌اند. الگويي براي كشورهاي جهان محسوب مي‌شوند. دو نوع انگيزه متفاوت در اين خصوص پيش رور قرار دارد: نخست كاهش آلودگي محيط‌زيست در نيمكره شمالي و ديگري تامين انرژي كشورهاي در حال رشد و كشورهاي جهان سوم كه دشواري تامين سوخت فسيلي را دارند. در كشورهاي صنعتي مي‌توانند شبكه‌هاي برق موجود را با انرژي باد تغذيه كنند، درواقع مصرف‌كننده بايد اين واقعيت را بپذيرد كه در ساعات بعد از اوج مصرف و شبكه‌هايي كه چندان پايدار نيستند، تغذيه انرژي انجام مي‌گيرد و مي‌تواند سريعاً به حد ظرفيت خود برسد.
    در بررسي دقيقتر وضعيت داخلي بسياري از كشورها به اين نتيجه منتهي مي‌شود كه تاسيسات كوچك در رده چند كيلوواتي همراه با شبكه برق به دست آمده از يك ديزل- ژنراتور هدف مهمتري خواهد بود تا با يك شبكه موازي به پروژه‌هايي از اين دست، كمتر علاقه‌اي نشان داده مي شود، زيرا نگهداري و سرويس يك يا چند دستگاه ديزل- ژنراتور كوچك در فواصل دور و حاشيه‌اي براي سرمايه‌گذاران دشوار و غيراقتصادي است. تنها در كشورهايي مجموعه توربين بادي همراه با دستگاه ديزل- ژنراتور مقرون به صرفه است كه توربين‌هاي كوچك نصب مي‌شود و نگهداري و سريس ديزل ژنراتور به راحتي امكان‌پذير است و براي ساخت دستگاه‌ها رقابت داخلي وجود دارد.

    كاربرد تورين بادي در فراساحل
    با نصب و بهره‌برداري از توربين‌هاي بادي در ساحل، موضوع نصب آنها در فراساحل نيز مطرح است. در حال حاضر توان هر توربين بادي به 2 مگاوات رسيده است كه مي‌تواند در فراساحل داراي معني و مفهوم باشد. برخي از سازندگان براي ساخت توانهاي 5/2 و 5 مگاوات در تلاش هستند. كشور دانمارك برنامه توسعه‌اي با 4000 مگاوات براي فراساحل در نظر گرفته است. كه مرحله نخست آن در سالهاي 2001 و 2002 ميلادي تحقق يافته است. در فراساحل درياي شمال و درياي بالتيك از سوي كشور آلمان توربين‌هاي فراساحل تا 500 مگاوات برنامه‌ريزي شده است كه تا سال 2006 ميلادي بايد از آنها بهره‌برداري شود. بديهي است با نصب توربين‌هاي بادي مسائل فني نيز پديدار مي‌شود. براي نمونه، خورندگي فلزات در اثر مه- نمك دريا، فرسايش در اثر قطرات آب، دشواري نگهداري و سرويس منظم دستگاه و بالاخره رعايت عمر سودمند دستگاه و عمق آب و حركت امواج دريا و انتقال انرژي به خشكي كه بايد به آنها توجه كرد، همچنين موضوع حمل ونقل توربين با قدرتهاي بالا و نصب آنها در فراساحل، برنامه‌ريزي و دقت فراواني را مي‌طلبد. بنابراين افزون بر مسائل كلي درباره توربين‌هاي بادي معمولي، مسائل جديدي نيز براي توربين‌هاي فراساحلي بروز مي‌كند كه بايد مورد پژوهش و بررسي واقع شوند.
    پژوهش‌هاي امروزي و تكامل توربين‌هاي بادي در آلمان نيازي به كمك‌هاي دولتي ندارد، زيرا انرژي باد به مرحله تجاري رسيده است و از اين رو پژوهش در اين زمينه به سازندگان مربوطه واگذار شده است.
    اغلب تحت مقوله پژوهشي در راستاي انرژي باد تنها بهبود تاسيسات انرژي باد مدنظر قرار مي‌گيرد، كه اين ديدگاه نادرست است. زيرا عملاً بسياري از مسائل حل نشده وجود دارد كه نياز به پاسخ فوري دارد تا ريسك سرمايه‌گذاري را كاهش دهد. بنابراين پژوهش و گسترش شامل دو بخش اساسي در كاربرد انرژي باد است: يكي فن‌آوري دستگاه و ديگري به كارگيري و بهره‌وري از آن است.
    هرگونه پژوهش و تكامل در زمينه انرژي بادي، امروزه توسط سازندگان بي‌وقفه دنبال مي‌شود. موضوع تسلط بر توان بالاي توربين بادي از ديدگاه فني مطرح است كه بتوانند آنها را به فروش برسانند. دامنه رقابت ميان سازندگان در حال حاضر تنها در ساخت توربين بادي با توان كم است و موضوع كيفيت، دوام يا بهينه سازي و به ويژه اقتصادي بودن آن مطرح نيست. يك متر بيشتر قطر پره روتور و در نتيجه به دست آوردن انرژي ساليانه بيشتر، امروزه در بازار فروش ارزش بيشتري از دوام تك‌تك تجهيزات رادارد. اين رقابت در تكامل هنگامي متوقف خواهد شد كه رشد توان به انتهاي طبيعي خود رسيده باشد. زماني تكامل توربين در راستاي كاهش قيمت، افزايش دوام و به ويژه افزايش توان به دست آمده نقش اساسي را ايفا مي‌كند تا تفاوت‌هاي مشخصه فرآورده. به سخني ديگر، پژوهش و تكامل براي بهبود تاسيسات انرژي باد در سالهاي آتي هنوز بايد موضوع مهمي راتشكيل دهد تا قابليت رقابت انرژي باد با مقايسه با ديگر مواد انرژي‌زا را بهبود بخشد.
    اغلب تندبادهاي مدام به تاسيسات انرژي باد آسيب‌ مي‌رسانند و يا از دوام آن به دليل خستگي سريع مواد، مي‌كاهند. براي پيش‌بيني دقيق هوا و وزش باد و پژوهش در اين باره نياز به سرمايه‌گذاري بيشتري دارد.

    پرهيز از مواد آلاينده، مدت زمان برگشت هزينه انرژي (سرمايه‌گذاري) بازيافت و كاهش هزينه‌ها
    در يك بررسي همه‌جانبه، در سال 2005 يك بحش انرژي باد برابر با 5/4 درصد (21390 گيگاوات ساعت) در تهيه برق در آلمان پيش‌بيني مي‌شود.
    مدت‌زمان برگشت هزينه انرژي براي ساخت دستگاه‌هاي انرژي بادي كه در حدود 6 تا 10 ماه پيش‌بيني مي‌شود (برحسب وزش باد و نصب آن) بررسيها براي بازيافت يا به كارگيري دستگاه‌هاي انرژي بادي پس از طي عمر مفيد آن نشان داده است كه بيم استفاده مجدد از قطعات پلاستيكي آن (پره‌هاي روتور) و پوشش بيروني توربين وجود نداشته و مساله‌اي را ايجاد نمي‌كند.
    كاهش هزينه ساخت دستگاه‌هاي انرژي بادي هنوز به مرحله نهايي نرسيده است. در واقع ساخت دستگاه‌ها بصورت انبوه نمي‌تواند تاثير چنداني روي كاهش هزينه‌ها بگذارد (با مقايسه با ساخت خودروها) زيرا تعداد ساخت آن با تعداد خودروها قابل مقايسه نيست.
    براي مثال، كاهش هزينه‌ها در اين راستا و افزايش تعداد توربين‌هاي بادي از 100 دستگاه به 1000 دستگاه در سال، رقمي درحدود 15 درصد امكان‌پذير است كه به سختي تحقق مي‌يابد.
    ساخت توربين بادي با توان چندمگاواتي براي 100 دستگاه، امروزه با تواني برابر با 100 تا 200 مگاوات در سال است و اين تعدادي است كه تنها چند سازنده مي‌توانند در اين حد توليد كنند.
    گام بعدي براي 1000 دستگاه در سال، سازندگان امروزي موفق مي‌شوند. زيرا بدان معني است كه 1000 مگاوات تا 2000 مگاوات در سال توسط يك كارخانه انجام پذيرد.
    تعداد فرآورده توربين‌هاي بادي در سرتاسر جهان در سال 1999 در حدود 4000 مگاوات بوده كه توسط 15 سازنده ساخته شده است، يعني به طور ميانگين در حدود 250 مگاوات توسط هر سازنده. كاهش ديگر قيمت مربوط به بهبود دستگاه مي‌شود. امروزه رقابت در ساخت دستگاه‌هاي با توان بالا صورت مي‌گيرد و شايد در آينده كاهش قيمت به 10 تا 20 درصد ديگر برسد.
    به دلايل زيست‌محيطي، توربين‌هاي بادي مي‌‌توانند در سالهاي آينده با نيروگاههاي حرارتي رقابت كند.
    توان نصب شده پايان 1999- مگاوات توان نصب شده در 1999- مگاوات توان پيش‌بيني شده تا 2004- مگاوات
    ايالات متحده آمريكا 2445 477 4845
    كانادا 126 43 626
    آمريكاي مركزي و جنوبي 97 28 697
    مجموع آمريكا 2668 548 6168
    آلمان 4442 1568 12142
    اسپانيا 1812 932 9912
    دانمارك 1738 325 3338
    هلند 433 54 1208
    انگلستان 362 24 1312
    ايتاليا 277 80 1477
    سوئد 220 44 1145
    يونان 158 103 808
    ايرلند 74 10 329
    پرتغال 61 10 261
    فنلاند 39 21 244
    اتريش 34 9 214
    فرانسه 25 4 725
    نروژ 13 4 863
    تركيه 9 0 579
    سوئيس 3 0 123
    ديگر كشورهاي اروپا 39 4 219
    مجموع اروپا 9739 3192 34899
    چين 262 25 1362
    هندوستان 1035 43 2185
    ژاپن 68 38 518
    ديگر كشورهاي آسيا 11 9 161
    مجموع آسيا 1376 115 4226
    خاورميانه 18 0 273
    كشورهاي تازه استقلال‌يافته 19 0 419
    ديگر كشورها 5 2 185
    مجموع قاره‌هاي ديگر 161 68 2121
    مجموع جهان 13934 3924 47414

    جلوگيري از انتشار گاز CO2 انرژي حاصله ساليانه در 31/12/1999 پيش‌بيني تا سال 2005 ميلادي
    صرفه‌جويي در مواد سوختي بدون انرژي هسته‌اي (1995) 93/0 كيلوگرم/كيلووات ساعت 67/7 ميليون تن CO2 89/19 ميليون تن CO2
    صرفه‌جويي در مواد سوختي (1995) 60/0 كيلوگرم / كيلووات ساعت 95/4 ميليون تن CO2 84/12 ميليون تن CO2
    صرفه‌جويي در مواد سوختي شامل زغال‌سنگ، نفت و گاز 89/0 كيلوگرم/ كيلووات ساعت 34/7 ميليون تن CO2 04/19 ميليون تن CO2
    صرفه‌جويي در مواد سوختي شامل زغال، گاز، اورانيوم 58/0 كيلوگرم/كيلووات ساعت 786/4 ميليون تن CO2 41/12 ميليون تن CO2
    نيروگاه سيكل تركيبي
    به نيروگاهي گفته مي‌شود كه در آن هم در توربين گازي و هم در توربين بخار قدرت توليد مي‌شود. فكر چرخه تركيبي به منظور بهبود بازده نيروگاه از طريق بهره‌گيري از انرژي گازهاي خروجي توربين، مطرح شد. اين كار را نيز به وسيلة بازيافت گرما مي‌توان انجام داد. بازيافت گرما، انرژي هدر رفته از دودكش را از 70 به 60 درصد انرژي داده شده مي‌رساند. استفاده از مبادله كن گرما منحصراً موجب افزايش بازده مي‌شود و توان خروجي را افزايش نمي‌دهد. در حقيقت، به دليل افت فشار بيشتري كه مبادله كن گرما به چرخه تحميل مي‌كند، استفاده از مبادله كن موجب كاهش نسبت فشار توربين و در نتيجه كاهش توان خالص خروجي به مقدار چند درصد مي‌شود. صرف نظر از اين كاهش اندك در توان خروجي، استفاده از مبادله‌كن گرما به دليل سطح تبادل گرماي زياد آن و لوله‌هاي بزرگ هوا و گاز درآن سبب گرانتر شدن نيروگاه مي‌شود. اثر ديگري كه به كارگيري مبادله‌كن گرما مي‌گذارد اين است كه نسبت فشار بهينه‌اي كه منجر به بيشينه شدن بازده مي‌شود به مقادير كوچكتر ميل مي‌كند و اين امر، توان را كاهش مي‌دهد.
    چرخه‌هاي ساده در نزديكي توان بيشينه كار مي‌كنند زيرا در مواردي مورد استفاده قرار مي‌گيرند كه بازده در آنها از اولويت عمده برخوردار نيست. در مقابل، استفاده از چرخه‌هاي بازيابي تنها هنگامي منطقي است كه در نزديكي بازده بيشينه عمل كنند. از اين رو توان خروجي چرخة بازيابي نسبت به توان چرخه ساده به مقدار بيشتري در حدود 10 تا 14 درصد كمتر است.


    همانطور كه گفته شده بالا بردن بازده نيروگاه توربين گازي به وسيلة بازيابي روش پرهزينه‌اي است. بنابراين بايد به دنبال روشي بود كه با به كارگيري آن بتوان هر دو مقدار بازده و توان را افزايش داد. راه حلي كه براي اين منظور پيدا شده است، استفاده از انرژي بسيار زياد گازهاي خروجي توربين براي توليد بخار جهت استفاده در يك نيروگاه بخار است. اين يك روش طبيعي است چرا كه توربين گاز يك ماشين با دماي نسبتاً بالا (1100 تا ) و توربين بخار يك ماشين با دماي نسبتاً پايين (540 تا ) است. اين كاركرد توأم توربين گازي «در طرف گرم» و توربين بخار در «طرف سرد» را نيروگاه چرخه تركيبي مي‌نامند.
    چرخه‌هاي تركيبي علاوه بر داشتن بازده و توان بالا، از مزاياي ديگري نيز مانند انعطاف‌پذيري، راه‌انداز سريع، مناسب بودن براي تأمين بار پايه و عملكرد دوره‌اي و بازده بالا در محدود گسترده‌اي از تغييرات بار برخوردار است. در نيروگاههاي تركيبي امكان استفاده از زغال سنگ، سوختهاي سنتزي و انواع ديگر سوختها وجود دارد.
    عيب بارز چرخه تركيبي، پيچيدگي آن است، زيرا اساساً در چرخه تركيبي از دو نوع تكنولوژي متفاوت استفاده مي‌شود.
    ايده چرخ تركيبي يك ايدة تازه نيست ودر اوايل اين قرن پيشنهاد شد. اما در سال 1950 بود كه اولين نيروگاه تركيبي ساخته شد. بعداز آن تاريخ تعداد نيروگاههاي تركيبي نصف شده، به ويژه در دهة 1970، به سرعت افزايش يافت، تخمين زده مي‌شود كه تا انتهاي دهة 1970 در حدود 100 واحد نيرواه تركيبي با ظرفيت كل MW150000 در سراسر جهان ساخته شود.
    چرخه‌هاي تركيبي به صورت‌هاي متعددي پيشنهاد شده‌اند كه مهمترين آنها عبارتند از:
    1) ديگ بازيافت گرما با احتراق اضافي يا بدون آن
    2) ديگ بازيافت گرما مجهز به بازيابي و يا گرمايش آب تغذيه
    3) ديگ بازيافت گرما با فشار بخارچندگانه
    4) چرخه بسته توربين گازي با گرمايش آب تغذيه در چرخة بخار
    در اين تحقيق، چرخه‌هاي تركيبي بسته توربين گازي با گرمايش آب تغذيه در چرخه بخار توضيح داده شده است. در اين تحقيق كه شامل دو قسمت كلي است، در ابتدا طرح كلي چرخة تركيبي (سيكل تركيبي) به صورت كلي مورد بحث قرار گرفته و در قسمت دوم، نحوة كاركرد دقيق و انواع مختلف قسمت‌هاي چرخه به صورت جداگانه مطرح گرديده است.
    مصرف گاز با ارزش گرمايي پايين به عنوان سوخت در نيروگاهي كه براي توليد برق از چرخة تركيبي استفاده مي‌كند، يكي از موارد كاربرد جالب اين نوع سوخت به شمار مي‌رود. چرخة تركيبي به چرخه‌اي گفته مي‌شود كه در دماي منبع گرم از توربين گازي و در دماي منبع سرد از توربين بخار استفاده مي‌كند.
    دستگاه تهيه گاز با ارزش گرمايي پايين، بسته به نوع فرايند مورد استفاده، در فشارها و دماهاي متعددي عمل مي‌كند. كاركرد بعضي از اين دستگاهها در فشار حداكثر تا Mpa5/3 و دماهاي خروجي 540 تا 1100 صورت مي‌گيرد. به طوري كه قبلاً اشاره شد، گاز خروجي بايد جهت تصفيه و پاكسازي خنك شود. در حالت عادي اين خنك شدن، با مقدار زيادي اتلاف انرژي و دفع آن به محيط همراه است. مزيت چرخة تركيبي در اين است كه از فشار زيادي واحد تهية گاز بهره‌گيري مي‌كند و به كمك يك مبادله‌كن گرماي گاز به گاز تا حد زيادي مانع اتلاف انرژي و دفع آن به محيط مي‌شود.

    در يك طرح پيشنهادي (33) گازي كه واحد تهية گاز را در نقطة 1 ودر دماي حدود 540 و فشار Mpa2 ترك مي‌كند، مقداري از گرماي خود را در يك مبادله‌كن گرماي بازيابي از دست مي‌دهد و در نقطة 2 آن را ترك مي‌كند و سپس در يك مبادله‌كن گرماي خارجي تا دماي پايين‌تر نقطة 3 به حدي خنك مي‌شد كه دماي آن براي فرايندهاي تصفيه و پاكسازي در فاصلة مراحل 3 تا 4 سازگار باشد آنگاه، گاز گرماي دفع شده به مبادله‌كن گرماي بازيابي را بازپس مي‌گيرد و آن را در 5 ترك ميكند. سپس اين گاز وارد اتاق احتراق توربين گازي مي‌شود و در آنجا با هواي متراكمي كه از كمپرسور مي‌آيد مخلوط مي‌شود و آن را در نقطة 6 و با دماي حدود 980 ترك مي‌كند. بعداً در توربين گاز انبساط مي‌يابد و در نقطة 7 و با دماي حدود 520 از آن خارج مي‌شود. آنگاه گاز وارد يك مولد بخار بازيابي مي‌شود و پس از توليد بخار، مولد را در نقطة 8 و با دمايي در حدود 125 ترك مي‌كند و وارد دودكش مي‌شود.
    توربين گاز، يكي از دو مولد برق و كمپرسور را تغذيه مي‌كند. كمپرسور هواي جو را در نقطة 9 و با دماي حدود 15 دريافت وآن را تا دماي 315 متراكم مي‌كند. كمپرسور دو وظيفه بر عهده دارد: اول تأمين هواي احتراق مورد نياز اتاق احتراق در 10، و دوم تأمين هواي مورد نياز واحد تهية گاز در 11 هواي واحد تهية گاز، قبلاً در گرمكن آب تغذيه چرخة بخار تا دماي 12 خنك مي‌شود، سپس فشار آن در يك كمپرسور تقويتي كه با موتور الكتريكي كار مي‌كند تا فشار واحد تهية گاز در 13 افزايش يابد. واحد تهية گاز طوري طرح مي‌شود كه بخار مورد نياز خود را از آب تغذيه در 14 تأمين مي‌كند. زغال در نقطة 15 با مخلوط هوا و بخار وارد واكنش مي‌شود و گاز با ارزش گرمايي پايين را در 1 توليد مي‌كند.
    چرخة بخار نسبتاً استاندارد است. بخار فوق گرم در مولد بخار بازيابي در فشار Mpa2 و دماي 480 در نقطة 16 توليد مي‌شود، سپس در توربين بخار انبساط مي‌يابد و توربين بخار مولد دوم را راه‌اندازي مي‌كند، و سرانجام در 17 به چگالنده وارد مي‌شود. مايع در 18 وارد پمپ مي‌شود و پس از خروج از آن در 19 وارد گرمكن آب تغذيه مي‌شود و در آنجا از هواي متراكم واحد تهيه گاز گرما مي‌كند. دراين طرح از بخار زيركش شدة توربين بخار استفاده‌اي به عمل نمي‌آيد، هرچند كه چنين گرمايش آب تغذيه‌اي را مي‌توان به كار برد. آب تغذيه در 20 وارد مولد بخار بازيابي مي‌شود و به اين ترتيب چرخه كامل مي‌شود.
    نيروگاه هسته اي
    برق هسته اي
    انرژي هسته اي از عمده ترين مباحث علوم و تكنولوژي هسته اي است و هم اكنون نقش عمده اي را در تأمين انرژي كشورهاي مختلف خصوصا كشورهاي پيشرفته دارد. اهميت انرژي و منابع مختلف تهيه آن، در حال حاضر جزء رويكردهاي اصلي دولتها قرار دارد. به عبارت بهتر، از مسائل مهم هر كشور در جهت توسعه اقتصادي و اجتماعي بررسي ، اصلاح و استفاده بهينه از منابع موجود انرژي در آن كشور است. امروزه بحرانهاي سياسي و اقتصادي و مسائلي نظير محدوديت ذخاير فسيلي، نگرانيهاي زيست محيطي، ازدياد جمعيت، رشد اقتصادي ، همگي مباحث جهان شمولي هستند كه با گستردگي تمام فكر انديشمندان را در يافتن راهكارهاي مناسب در حل معظلات انرژي در جهان به خود مشغول داشته اند.
    در حال حاضر اغلب ممالك جهان به نقش و اهميت منابع مختلف انرژي در تأمين نيازهاي حال و آينده پي برده و سرمايه گذاريها و تحقيقات وسيعي را در جهت سياستگذاري، استراتژي و برنامه هاي زيربنايي و اصولي انجام مي دهند. هم اكنون تدوين استراتژي كه مركب از بررسي تمامي پارامترهاي تأثير گذار در انرژي و تعيين راهكارهاي مناسب جهت تميزتر و كارا ترنمودن انرژي و الگوي بهينه مصرف آن مي باشد، در رأس برنامه هاي زيربنايي اكثر كشورهاي جهان قرار دارد. در ميان حاملهاي مختلف انرژي،انرژي هسته اي جايگاه ويژه اي دارد. هم اكنون بيش از 430 نيروگاه هسته اي در جهان فعال مي باشند و انرژي برخي كشورها مانند فرانسه عمدتا از برق هسته اي تأمين مي شود.
    جمهوري اسلامي ايران بيش از سه دهه است كه تحقيقات متنوعي را در زمينه هاي مختلف علوم و تكنولوژي هسته اي انجام داده و براساس استراتژي خود، مصمم به ايجاد نيروگاههاي هسته اي به ظرفيت كل 6000 مگاوات تا سال 1400 هجري شمسي مي باشد. در اين زمينه، جمهوري اسلامي ايران در نشست گذشته آژانس بين المللي انرژي اتمي، تمايل خود را نسبت به همكاري تمامي كشورهاي جهان جهت ايجاد اين نيروگاهها و تهيه سوخت مربوطه رسما اعلام نموده است.
    كاربردهاي علوم و تكنولوژي هسته اي
    عليرغم پيشرفت همه جانبه علوم و فنون هسته اي در طول نيم قرن گذشته، هنوز اين تكنولوژي در اذهان عمومي ناشناخته مانده است. وقتي صحبت از انرژي اتمي به ميان مي آيد، اغلب مردم ابر قارچ مانند حاصل از انفجارات اتمي و يا راكتورهاي اتمي براي توليد برق را در ذهن خود مجسم مي كنند و كمتر كسي را مي توان يافت كه بداند چگونه جنبه هاي ديگري از علوم هسته اي در طول نيم قرن گذشته زندگي روزمره او را دچار تحول نموده است. اما حقيقت در اين است كه در طول اين مدت در نتيجه تلاش پيگير پژوهشگران و مهندسين هسته اي، اين تكنولوژي نقش مهمي را در ارتقاء سطح زندگي مردم، رشد صنعت و كشاورزي و ارائه خدمات پزشكي ايفاء نموده است. موارد زير از مهمترين استفاده هاي صلح آميز از علوم و تكنولوژي هسته اي مي باشند:
    1- استفاده از انرژي حاصل از فرآيند شكافت هسته اورانيوم يا پلوتونيوم در راكتورهاي اتمي جهت توليد برق و يا شيرين كردن آب درياها.
    2-استفاده از راديوايزوتوپها در پزشكي، صنعت و كشاورزي
    3- استفاده از پرتوهاي ناشي از فرآيندهاي هسته اي در پزشكي، صنعت و كشاورزي
    برق هسته اي
    از مهمترين منابع استفاده صلح آميز از انرژي اتمي، ساخت راكتورهاي هسته اي جهت توليد برق مي باشد. راكتورهسته اي وسيله اي است كه در آن فرايند شكافت هسته اي بصورت كنترل شده انجام مي گيرد. در طي اين فرايند انرژي زياد آزاد مي گردد به نحوي كه مثلا در اثر شكافت نيم كيلوگرم اورانيوم انرژي معادل بيش از 1500 تن زغال سنگ بدست مي آيد. هم اكنون در سراسر جهان، راكتورهاي متعددي در حال كار وجود دارند كه بسياري از آنها براي توليد قدرت و به منظور تبديل آن به انرژي الكتريكي، پاره اي براي راندن كشتيها و زيردريائيها، برخي براي توليد راديو ايزوتوپوپها و تحقيقات علمي و گونه هايي نيز براي مقاصد آزمايشي و آموزشي مورد استفاده قرار مي گيرند. در راكتورهاي هسته اي كه براي نيروگاههاي اتمي طراحي شده اند (راكتورهاي قدرت)، اتمهاي اورانيوم و پلوتونيم توسط نوترونها شكافته مي شوند و انرژي آزاد شده گرماي لازم را براي توليد بخار ايجاد كرده و بخار حاصله براي چرخاندن توربينهاي مولد برق بكار گرفته مي شوند.
    راكتورهاي اتمي را معمولا برحسب خنك كننده، كند كننده، نوع و درجه غناي سوخت در آن طبقه بندي مي كنند. معروفترين راكتورهاي اتمي، راكتورهايي هستند كه از آب سبك به عنوان خنك كننده و كند كننده و اورانيوم غني شده(2 تا 4 درصد اورانيوم 235) به عنوان سوخت استفاده مي كنند. اين راكتورها عموما تحت عنوان راكتورهاي آب سبك(LWR ) شناخته مي شوند. راكتورهاي WWER,BWR,PWR از اين دسته اند. نوع ديگر، راكتورهايي هستند كه از گاز به عنوان خنك كننده، گرافيت به عنوان كند كننده و اورانيوم طبيعي يا كم غني شده به عنوان سوخت استفاده مي كنند. اين راكتورها به گاز- گرافيت معروفند. راكتورهاي HTGR,AGR,GCR از اين نوع مي باشند. راكتور PHWR راكتوري است كه از آب سنگين به عنوان كندكننده و خنك كننده و از اورانيوم طبيعي به عنوان سوخت استفاده مي كند. نوع كانادايي اين راكتور به CANDU موسوم بوده و از كارايي خوبي برخوردار مي باشد. مابقي راكتورها مثل FBR (راكتوري كه از مخلوط اورانيوم و پلوتونيوم به عنوان سوخت و سديم مايع به عنوان خنك كننده استفاده كرده و فاقد كند كننده مي باشد) LWGR(راكتوري كه از آب سبك به عنوان خنك كننده و از گرافيت به عنوان كند كننده استفاده مي كند) از فراواني كمتري برخوردار مي باشند. در حال حاضر، راكتورهاي PWR و پس از آن به ترتيب PHWR,WWER,BWR فراوانترين راكتورهاي قدرت در حال كار جهان مي باشند.
    به لحاظ تاريخي اولين راكتور اتمي در آمريكا بوسيله شركت "وستينگهاوس" و به منظور استفاده در زير دريائيها ساخته شد. ساخت اين راكتور پايه اصلي و استخوان بندي تكنولوژي فعلي نيروگاههاي اتميPWR را تشكيل داد. سپس شركت جنرال الكتريك موفق به ساخت راكتورهايي از نوع BWR گرديد. اما اولين راكتوري كه اختصاصا جهت توليد برق طراحي شده، توسط شوروي و در ژوئن 1954در "آبنينسك" نزديك مسكو احداث گرديد كه بيشتر جنبه نمايشي داشت، توليد الكتريسيته از راكتورهاي اتمي در مقياس صنعتي در سال 1956 در انگلستان آغاز گرديد. تا سال 1965 روند ساخت نيروگاههاي اتمي از رشد محدودي برخوردار بود اما طي دو دهه 1966 تا 1985 جهش زيادي در ساخت نيروگاههاي اتمي بوجود آمده است. اين جهش طي سالهاي 1972 تا 1976 كه بطور متوسط هر سال 30 نيروگاه شروع به ساخت مي كردند بسيار زياد و قابل توجه است. يك دليل آن شوك نفتي اوايل دهه 1970 مي باشد كه كشورهاي مختلف را برآن داشت تا جهت تأمين انرژي مورد نياز خود بطور زايد الوصفي به انرژي هسته اي روي آورند. پس از دوره جهش فوق يعني از سال 1986 تاكنون روند ساخت نيروگاهها به شدت كاهش يافته بطوريكه بطور متوسط ساليانه 4 راكتور اتمي شروع به ساخت مي شوند.
    كشورهاي مختلف در توليد برق هسته اي روند گوناگوني داشته اند. به عنوان مثال كشور انگلستان كه تا سال 1965 پيشرو در ساخت نيروگاه اتمي بود، پس از آن تاريخ، ساخت نيروگاه اتمي در اين كشور كاهش يافت، اما برعكس در آمريكا به اوج خود رسيد. كشور آمريكا كه تا اواخر دهه 1960 تنها 17 نيروگاه اتمي داشت در طول دهه هاي 1970و 1980 بيش از 90 نيروگاه اتمي ديگر ساخت. اين مسئله نشان دهنده افزايش شديد تقاضاي انرژي در آمريكاست. هزينه توليد برق هسته اي در مقايسه با توليد برق از منابع ديگر انرژي در امريكا كاملا قابل رقابت مي باشد. هم اكنون فرانسه با داشتن سهم 75 درصدي برق هسته اي از كل توليد برق خود درصدر كشورهاي جهان قرار دارد. پس از آن به ترتيب ليتواني(73درصد)، بلژيك(57درصد)، بلغارستان و اسلواكي(47درصد) و سوئد (8/46درصد) مي باشند. آمريكا نيز حدود 20 درصد از توليد برق خود را به برق هسته اي اختصاص داده است.
    گرچه ساخت نيروگاههاي هسته اي و توليد برق هسته اي در جهان از رشد انفجاري اواخر دهه 1960 تا اواسط 1980 برخوردار نيست اما كشورهاي مختلف همچنان درصدد تأمين انرژي مورد نياز خود از طريق انرژي هسته اي مي باشند. طبق پيش بيني هاي به عمل آمده روند استفاده از برق هسته اي تا دهه هاي آينده همچنان روند صعودي خواهد داشت. در اين زمينه، منطقه آسيا و اروپاي شرقي به ترتيب مناطق اصلي جهان در ساخت نيروگاه هسته اي خواهند بود. در اين راستا، ژاپن با ساخت نيروگاههاي اتمي با ظرفيت بيش از 25000 مگا وات درصدر كشورها قرار دارد. پس از آن چين، كره جنوبي، قزاقستان، روماني، هند و روسيه جاي دارند. استفاده از انرژي هسته اي در كشورهاي كاندا، آرژانتين، فرانسه، آلمان، آفريقاي جنوبي، سوئيس و آمريكا تقريبا روند ثابتي را طي دو دهه آينده طي خواهد كرد.
    ديدگاههاي اقتصادي و زيست محيطي برق هسته اي
    جمهوري اسلامي ايران در فرايند توسعه پايدار خود به تكنولوژي هسته اي چه از لحاظ تأمين نيرو و ايجاد جايگزيني مناسب در عرصه انرژي و چه از نظر ديگر بهره برداريهاي صلح آميز آن در زمينه هاي صنعت، كشاورزي، پزشكي و خدمات نياز مبرم دارد كه تحقق اين رسالت مهم به عهده سازمان انرژي اتمي ايران مي باشد، بديهي است در زمينه كاربرد انرژي هسته اي به منظور تأمين قسمتي از برق مورد نياز كشور قيود و فاكتورهاي بسيار مهمي از جمله مسايل اقتصادي و زيست محيطي مطرح مي گردند.
    ديدگاه اقتصادي استفاده از برق هسته اي
    امروزه كشورهاي بسياري بويژه كشورهاي اروپايي سهم قابل توجهي از برق مورد نياز خود را از انرژي هسته اي تأمين مي نمايند. بطوريكه آمار نشان مي دهد از مجموع نيروگاههاي هسته اي نصب شده جهت تأمين برق در جهان به ترتيب 35 درصد به اروپاي غربي، 33 درصد به آمريكاي شمالي، 5/16 درصد به خاور دور، 13 درصد به اروپاي شرقي و نهايتا فقط 74/0 درصد به آسياي ميانه اختصاص دارد. بدون شك در توجيه ضرورت ايجاد تنوع در سيستم عرضه انرژي كشورهاي مذكور، انرژي هسته اي به عنوان يك گزينه مطمئن اقتصادي مطرح است. بنابراين ابعاد اقتصادي جايگزيني نيروگاههاي هسته اي با توجه به تحليل هزينه توليد(قيمت تمام شده) برق در سيستمهاي مختلف نيرو قابل تأمل و بررسي است. از اينرو در اغلب كشورها، نيروگاههاي هسته اي با عملكرد مناسب اقتصادي خود از هر لحاظ با نيروگاههاي سوخت فسيلي قابل رقابت مي باشند.
    بهرحال طي چند دهه گذشته كاهش قيمت سوختهاي فسيلي در بازارهاي جهاني، سبب افزايش هزينه هاي ساخت نيروگاههاي هسته اي به دليل تشديد مقررات و ضوابط ايمني، طولاني تر شدن مدت ساخت و بالاخره باعث ايجاد مشكلات تأمين مالي لازم و بالا رفتن قيمت تمام شده هر واحد الكتريسيته در اين نيروگاهها شده است. از يك طرف مشاهده ميشود كه طي اين مدت حدود 40 درصد از هزينه هاي چرخه سوخت هسته اي كاهش يافته است و از سويي ديگر با توجه به پيشرفتهاي فني و تكنولوژي حاصل از طرحهاي استاندارد و برنامه ريزيهاي دقيق بمنظور تأمين سرمايه اوليه مورد نياز مطمئن و به هنگام احداث چند واحد در يك سايت براي صرفه جوئيهاي ناشي از مقياس مربوط به تأسيسات و تسهيلات مشترك مورد نياز در هر نيروگاه، همچنان مزيت نيروگاههاي اتمي از ديدگاه اقتصادي نسبت به نيروگاههاي با سوخت فسيلي در اغلب كشورها حفظ شده است.
    ساير ديدگاههاي اقتصادي در مورد آينده انرژي هسته اي حاكي از آن است كه براساس تحليل سطح تقاضا و منابع عرضه انرژي در جهان، توجه به توسعه تكنولوژيهاي موجود و حقايقي نظير روند تهي شدن منابع فسيلي در دهه هاي آينده، مزيتهاي زيست محيطي انرژي اتمي و همچنين استناد به آمار و عملكرد اقتصادي و ضريب بالاي ايمني نيروگاههاي هسته اي، مضرات كمتر چرخه سوخت هسته اي نسبت به ساير گزينه هاي سوخت و پيشرفتهاي حاصله در زمينه نيروگاههاي زاينده و مهار انرژي گداخت هسته اي در طول نيم قرن آينده، بدون ترديد انرژي هسته اي يكي از حاملهاي قابل دسترس و مطمئن انرژي جهان در هزاره سوم ميلادي به شمار مي رود. در اين راستا شوراي جهاني انرژي تا سال 2020 ميلادي ميزان افزايش عرضه انرژي هسته اي را نسبت به سطح فعلي حدود 2 برابر پيش بيني مي نمايد. با توجه به شرايط موجود چنانچه از لحاظ اقتصادي هزينه هاي فرصتي فروش نفت و گاز را با قيمتهاي متعارف بين المللي در محاسبات هزينه توليد(قيمت تمام شده) براي هر كيلووات برق توليدي منظور نمائيم و همچنين تورم و افزايش احتمالي قيمتهاي اين حاملها(بويژه طي مدت اخير) را براساس روند تدريجي به اتمام رسيدن منابع ذخاير نفت و گاز جهاني مدنظر قرار دهيم، يقينا در بين گزينه هاي انرژي موجود در جمهوري اسلامي ايران، استفاده از حامل انرژي هسته اي نزديكترين فاصله ممكن را با قيمت تمام شده برق در نيروگاههاي فسيلي خواهد داشت.
    ديدگاه زيست محيطي استفاده از برق هسته اي
    افزايش روند روزافزون مصرف سوختهاي فسيلي طي دو دهه اخير و ايجاد انواع آلاينده هاي خطرناك و سمي و انتشار آن در محيط زيست انسان، نگرانيهاي جدي و مهمي براي بشر در حال و آينده به دنبال دارد. بديهي است كه اين روند به دليل اثرات مخرب و مرگبار آن در آينده تداوم چنداني نخواهد داشت. از اينرو به جهت افزايش خطرات و نگرانيها تدريجي در مورد اثرات مخرب انتشار گازهاي گلخانه اي ناشي از كاربرد فرايند انرژيهاي فسيلي، واضح است كه از كاربرد انرژي هسته اي بعنوان يكي از رهيافتهاي زيست محيطي براي مقابله با افزايش دماي كره زمين و كاهش آلودگي محيط زيست ياد مي شود. همچنانكه آمار نشان مي دهد، در حال حاضر نيروگاههاي هسته اي جهان با ظرفيت نصب شده فعلي توانسته اند سالانه از انتشار 8 درصد از گازهاي دي اكسيد كربن در فضا جلوگيري كنند كه در اين راستا تقريبا مشابه نقش نيروگاههاي آبي عمل كرده اند.
    چنانچه ظرفيتهاي در دست بهره برداري فعلي توليد برق نيروگاههاي هسته اي، از طريق نيروگاههاي با خوراك ذغال سنگ تأمين مي شد، سالانه بالغ بر 1800 ميليون تن دي اكسيد كربن، چندين ميليون تن گازهاي خطرناك دي اكسيد گوگرد و نيتروژن، حدود 70 ميليون تن خاكستر و معادل 90 هزار تن فلزات سنگين در فضا و محيط زيست انسان منتشر مي شد كه مضرات آن غيرقابل انكار است. لذا در صورت رفع موانع و مسايل سياسي مربوط به گسترش انرژي هسته اي در جهان بويژه در كشورهاي در حال توسعه و جهان سوم، اين انرژي در دهه هاي آينده نقش مهمي در كاهش آلودگي و انتشار گازهاي گلخانه اي ايفا خواهد نمود.
    درحاليكه آلودگيهاي ناشي از نيروگاههاي فسيلي سبب وقوع حوادث و مشكلات بسيار زياد بر محيط زيست و انسانها مي شود، سوخت هسته اي گازهاي سمي و مضر توليد نمي كند و مشكل زباله هاي اتمي نيز تا حد قابل قبولي رفع شده است، چرا كه در مورد مسايل پسمانداري با توجه به كم بودن حجم زباله هاي هسته اي و پيشرفتهاي علوم هسته اي بدست آمده در اين زمينه در دفن نهايي اين زباله ها در صخره هاي عميق زيرزميني با توجه به حفاظت و استتار ايمني كامل، مشكلات موجود تا حدود زيادي از نظر فني حل شده است و طبيعتا در مورد كشور ما نيز تا زمان لازم براي دفع نهايي پسمانهاي هسته اي، مسائل اجتماعي باقيمانده از نظر تكنولوژيكي كاملا مرتفع خواهد شد.
    از سوي ديگر بنظر مي رسد كه بيشترين اعتراضات و مخالفتها در زمينه استفاده از انرژي اتمي بخاطر وقوع حوادث و انفجارات در برخي از نيروگاههاي هسته اي نظير حادثه اخير در نيروگاه چرنوبيل مي باشد، اين در حالي است كه براساس مطالعات بعمل آمده احتمال وقوع حوادثي كه منجر به مرگ عده اي زياد بشود نظير تصادف هوايي، شكسته شدن سدها، انفجارات زلزله، طوفان، سقوط سنگهاي آسماني و غيره، بسيار بيشتر از وقايعي است كه نيروگاههاي اتمي مي توانند باعث گردند.
    به هر حال در مورد مزاياي نيروگاههاي هسته اي در مقايسه با نيروگاههاي فسيلي صرفنظر از مسايل اقتصادي علاوه بر اندك بودن زباله هاي آن مي توان به تميزتر بودن نيروگاههاي هسته اي و عدم آلايندگي محيط زيست به آلاينده هاي خطرناكي نظير SO2,NO2,CO,CO2 ، پيشرفت تكنولوژي و استفاده هرچه بيشتر از اين علم جديد، افزايش كارايي و كاربرد تكنولوژي هسته اي در ساير زمينه هاي صلح آميز در كنار نيروگاههاي هسته اي اشاره نمود.
    در مجموع ارزيابيهاي اقتصادي و مطالعات بعمل آمده در مورد مقايسه هزينه توليد(قيمت تمام شده) برق در نيروگاههاي رايج فسيلي كشور و نيروگاه اتمي نشان مي دهد كه قيمت اين دو نوع منبع انرژي صرفنظر از هزينه هاي اجتماعي، تقريبا نزديك به هم و قابل رقابت با يكديگر هستند
    مقايسه هزينه هاي اجتماعي توليد برق در نيروگاههاي فسيلي و اتمي
    بر اساس مطالعات به عمل آمده توسط وزارت نيرو در سال 1378 در خصوص تعيين هزينه هاي اجتماعي آلاينده هاي زيست محيطي مصرف سوختهاي فسيلي در چند نيروگاه فسيلي مورد نظر در كشور، نتايج به دست آمده به شرح ذيل مي باشد:همچنين در تازه ترين مطالعه اي كه براي تعيين هزينه هاي اجتماعي نيروگاههاي هسته اي در 5 كشور اروپايي بلژيك، آلمان، فرانسه، هلند و انگلستان صورت گرفته است، ميزان هزينه هاي اجتماعي ناشي از نيروگاههاي هسته اي در مقايسه با نيروگاههاي فسيلي بسيار پائين است. در اين مطالعه هزينه هاي خارجي هر كيلووات ساعت برق توليدي در نيروگاههاي هسته اي در حدود
    39/0 سنت( معادل 2/31 ريال) برآورده شده است. بنابراين در صورتيكه هزينه هاي اجتماعي توليد برق را در ارزيابيهاي اقتصادي نيروگاههاي فسيلي و هسته اي منظور نمائيم قطعا قيمت تمام شده هر كيلووات ساعت برق در نيروگاه هسته اي نسبت به فسيلي بطور قابل ملاحظه اي كاهش خواهد يافت.
    به هر حال نيروگاههاي فسيلي و هسته اي هر كدام داراي مزايا و معايب خاص خود مي باشند و ايجاد هر يك متناسب با مقتضيات زماني و مكاني هر كشور خواهد بود و انتخاب نهايي و تصميم گيري در اين زمينه مي بايست با توجه به فاكتورهايي از قبيل عوامل تكنولوژيكي، ارزشي، سياسي، اقتصادي و زيست محيطي توأما اتخاذ گردد. قدر مسلم ايجاد تنوع در سيستم عرضه و تأمين انرژي از استراتژيهاي بسيار مهم در زمينه توسعه سيستم پايدار انرژي در هر كشور محسوب مي شود. در اين راستا با توجه به بررسيهاي صورت گرفته، شوراي انرژي اتمي كشور مصمم به ايجاد نيروگاههاي اتمي به ظرفيت كل 6000 مگاوات در سيستم عرضه انرژي كشور تا سال 1400 هجري شمسي مي باشد.
    نيروگاه حرارتي
    مقدمه

    نيروگاه حرارتي جهت توليد انرژي الكتريكي بكار مي*رود كه در عمل پره*هاي توربين بخار توسط فشار زياد بخار آب ، به حركت در آمده و ژنراتور را كه با توربين كوپل شده است، به چرخش در مي*آورد. در نتيجه ژنراتور انرژي الكتريكي توليد مي*كند. نيروگاه حرارتي به مقدار زيادي آب نياز دارد. در نتيجه در محلهايي كه آب به فراواني يافت مي*شود، ترجيحا از اين نوع نيروگاه استفاده مي*شود. چون انرژي الكتريكي را به روشهاي ديگري ، مثل انرژي آب در پشت سدها (توربين آبي) ، انرژي باد (توربين بادي) ، انرژي سوخت (توربين گازي) و انرژي اتمي هم مي*توان تهيه كرد. سوخت نيروگاه حرارتي شامل ، فروت و يا گازوئيل طبيعي است.







    مشخصات فني نيروگاه

    سوخت

    سوخت اصلي نيروگاه ، سوخت سنگين (مازوت) مي*باشد كه توسط تانكرها حمل و از طريق ايستگاه تخليه سوخت در سه مخزن 33000 متر مكعبي ذخيره مي*گردد. سوخت راه اندازي ، سوخت سبك (گازوئيل) است كه در يك مخزن 430 متر مكعبي نگهداري مي*شود.

    آب

    آب مصرفي نيروگاه ، جهت توليد بخار و مصرف برج خنك كن و سيستم آتش نشاني ، از طريق چاه عميق تامين مي*گردد.

    سيستم خنك كن

    برج خنك كن نيروگاه از نوع تر مي*باشد و 18 عدد فن (خنك كن) دارد كه هر يك داراي الكتروموتوري به قدرت 132kw و سرعت سرعت 141RPM مي*باشد و بوسيله دو عدد پمپ توسط لوله*اي به قطر 5.2 متر آب مورد نياز خنك كن تامين مي*گردد. دماي آب برگشتي در برج خنك كن 29.6 درجه سانتيگراد و دماي آب خروجي از برج 21.6 درجه سانتيگراد مي*باشد.

    سيستم تصفيه آب

    سيستم تصفيه آب جهت برج خنك كن

    آب لازم جهت برج خنك كن بايستي فاقد املاحي باشد كه سريعا در لوله*هاي كندانسور رسوب مي*كنند (از قبيل بي*كربناتها). اين املاح با افزودن كلرورفريك ، آب آهك و آلومينات سديم گرفته مي*شود و سپس رسوبات جمع شده توسط يك جاروب جمع كننده به بيرون منتقل مي*شوند. به اين آب كه بدون سختي بي كربنات باشد، آب نرم مي*گويند. آب نرم وارد دو استخر ذخيره شده و از آنجا توسط پمپهايي جهت تامين كمبود آب به برج خنك كن فرستاده مي*شود. براي از بين بردن خزه و جلبك در اين استخر ، سيستم تزريق كلر طراحي شده است.

    سيستم تصفيه آب جهت توليد بخار

    چون آب مورد نياز براي توليد بخار و جبران كمبود سيكل آب و بخار بايستي كيفيت بسيار بالايي داشته باشد، لذا براي اين منظور از يك سيستم مشترك براي هر دو واحد استفاده مي*شود. بعد از اينكه مقداري از سختي آب گرفته شد، وارد سه دستگاه فيلتر شني مي*شود، سپس به مخزن ذخيره وارد و از آنجا توسط سه عدد پمپ به طرف فيلتر كربني فعال فرستاده مي*شود، تا كلر موجود در آب بوسيله زغال فعال جذب شود. بعد از اين فيلتر يك مبدل حرارتي در نظر گرفته شده كه دماي آب را در 25 درجه سانتيگراد ثابت نگه مي*دارد.

    سپس اين آب وارد دو دستگاه فيلتر 5 ميكروني شده و ذراتي كه قطر آنها بيشتر از 5 ميكرون مي*باشند، توسط اين فيلترها جذب و وارد دو دستگاه ريورس اسمز مي*گردد. در اين دستگاه 90% املاح محلول در آب گرفته مي*شود. آب پس از اين مرحله وارد مخزن زيرزميني مي*گردد. سپس توسط سه پمپ به فيلترهاي كاتيوني و آنيوني وارد شده و پس از تنظيم PH و كنترل از نظر شيميايي به مخازن ذخيره آب وارد و مورد استفاده قرار مي*گيرد.

    بويلر

    بويلر نيروگاه داراي درام بالائي و پائيني بوده و به صورت گردش اجباري توسط سه عدد پمپ سيركوله (Boiler Circulation Watepump) و كوره ، تحت فشار مي*باشد. درام بالايي معمولا به وزن 110 تن در ارتفاع 50.6 متري و ضخامت جداره 11 سانتيمتر مي*باشد. بويلر داراي 16 مشعل هست كه در چهار طبقه و در چهار گوشه با زاويه ثابت قرار گرفته*اند. مشعلهاي رديف پائين براي هر دو سوخت مازوت و گازوئيل بكار مي*رود.

    توربين

    نيروگاه از نوع تركيب متوالي در يك امتداد (Tadem Compound) و داراي سه سيلندر فشار قوي ، فشار متوسط و فشار ضعيف مي*باشد كه توربين فشار قوي و فشار متوسط در يك پوسته قرار گرفته و در پوسته ديگر توربينهاي فشار ضعيف قرار دارند. توربين فشار قوي 8 طبقه و توربين فشار متوسط 5 طبقه و توربين فشار ضعيف با دو جريان متقارن و هر يك داراي 5 طبقه است. بخار از طريق دو عدد شير اصلي در دو طرف توربين و شش عدد شير كنترل وارد توربين فشار قوي شده و بعد از انبساط در چندين طبقه از توربين به بويلر بر مي*گردد. سپس وارد توربين فشار متوسط شده و بعد از انبساط توسط يك لوله مشترك وارد توريبن فشار ضعيف گرديده و به طرف كندانسور مي*رود.

    كندانسور

    كندانسور نيروگاه از نوع سطحي يك عبوري با جعبه آب مجزا مي*باشد كه در زير توريبن فشار ضعيف قرار گرفته است. براي ايجاد خلا كندانسور از دو نوع سيستم استفاده مي*شود كه سيستم اول در موقع راه اندازي و توسط يك مكنده هوا انجام مي*يابد. در طول بهره برداري خلا لازم توسط دو دستگاه پمپ تامين مي*گردد كه اين پمپها فشار داخل كندانسور را كاهش مي*دهند.

    ژنراتور

    ژنراتور طوري طراحي شده است كه در مقابل اتصال كوتاه و نوسانات ناگهاني بار و احيانا انفجار هيدروژن در داخل ماشين مقاومت كافي داشته باشد. سيستم تحريك آن شامل يك اكساتير پيلوت (Pilot exiter) با ظرفيت 45 كيلوولت آمپر مي*باشد و جريان تحريك اكسايتر پيلوت در لحظه Flashing از طريق باطري خانه تامين مي*شود. ضمنا سيم پيچهاي دستگاه توسط هوا خنك كاري مي*شوند.

    ترانسفورمرها و تغذيه داخلي نيروگاه
    ترانس اصلي (Main Ttansformer):اين ترانس به صورت سه تك فاز با ظرفيت هر كدام 150 مگا ولت آمپر و فركانس 50 هرتز و امپرانس ولتاژ 14.2 درصد به عنوان Step Up Tranformer ، جهت بالا بردن ولتاژ خروجي ژنراتور از 20 كيلو ولت تا 230 كيلو ولت بكار رفته است. در ضمن نسبت تبديل ، 10.20%±247 كيلو ولت مي*باشد.
    ترانس واحد (Unit Transformer):اين ترانس با ظرفيت 35/22/22 مگا ولت آمپر و نسبت تبديل 3/316/516%±20 و فركانس 50 هرتز و امپدانس ولتاژ 8.5% و تپ چنجر Off- Loud ، ولتاژ 20 كيلو ولت خروجي ژنراتور را تبديل به 6 كيلو ولت نموده و به منظور تامين مصارف داخلي نيروگاه در حين بهره برداري بكار مي*رود.
    ترانس استارتينگ (Start up Trans): اين ترانس به تعداد دو عدد ، به نامهاي LTB و LTA و با ظرفيت 25/25/25 مگا ولت آمپر و نسبت تبديل 10%±3/6/10%± كيلو ولت و فركانس 50 هرتز و امپدانس 10% و تپ چنجر On Lead ، ولتاژ 230 كيلو ولت شبكه را تبديل به 6 كيلو ولت نموده و شينه*ها را طبق شكل شماتيك ضميمه تغذيه مي*نمايد.
    ترانس تغذيه (Auxiliary Trans): ترانس تغذيه در ظرفيتهاي مختلف 630/1600/2500 كيلو ولت آمپر ، ولتاژ 6 كيلو ولت را تبديل به 400 ولت مي*نمايد كه جهت تامين مصارف داخلي فشار ضعيف بكار مي*رود.
    سيستم آتش نشاني
    آب: كليه قسمتهاي نيروگاه (ساختمان شيمي ، ماشين خانه ، بويلر ، كارگاه ، انبار و ...) و محوطه مجهز به سيستم آب آتش نشاني مي*باشند.
    فوم: كليه قسمتهاي سوخت رساني اعم از مخازن سوخت سبك و سنگين و ايستگاه تخليه سوخت ، بويلر ديزل اضطراري و بويلر كمكي مجهز به سيستم فوم مي*باشند.
    گاز CO2: كليه سيستمهاي الكتريكي از قبيل ساختمان الكتريكي و... توسط گاز CO2 حفاظت مي*گردد.
    نيروگاه زمين گرمايي
    ممكن است بحث در خصوص كاربرد انرژيهاي تجديد‌پذير وبويژه انرژي زمين‌گرمايي در كشور روسيه كه داراي ذخاير بسيار عظيم سوختهاي فسيلي (بويژه گاز طبيعي) است قدري عجيب به نظر مي‌آيد. اما حتي اين كشور غني از انرژي نيز در برخي از نقاط دور دست خود با مشكل تامين برق ساكنانش مواجه است. بدين ترتيب كه هزينه حمل سوخت نيروگاهها به نقاط مذكور نيازمند صرف هزينه‌هاي زيادي است. به عنوان مثال اين وضعيت در منطقه كامچاتكا كه نيروگاه ماتنوسكي در آن واقع شده است، وجود دارد. لذا مقامات محلي سعي دارند تا با اكتشافات ميادين زمين‌گرمايي منطقه و بهره‌برداري از آن جهت توليد برق بر مشكل مذكور غلبه كنند. در اين مقاله نخست تاريخچه كاربرد انرژي زمين‌گرمايي در روسيه به اختصار مطرح شده سپس مطالبي پيرامون منطقه زمين‌گرمايي ماتنوسكي و نيروگاه مربوطه ارايه شده است.

    تاريخچه بهره‌برداري از انرژي زمين‌گرمايي در روسيه
    نخستين تجربه روسها در توليد برق از منابع زمين‌گرمايي در منطقه پاراتونسكي كامچاتكا (در شرق روسيه) در سال 1967 بود كه براي نخستين بار در جهان از سيكل دو مداره براي توليدبرق از منابع زمين‌گرمايي حرارت پايين استفاده شد. ظرفيت نيروگاه مذكور حدود kw600 بود.
    نخستين نيروگاه زمين‌گرمايي بزرگ روسيه در سال 1967 و در منطقه پوزتسكي كامچاتكا احداث شد. ظرفيت نصب شده مرحله اول نيروگاه 5 مگاوات بود كه در سال 1982 پس از نصب تجهيزات مرحله دوم، ظرفيت آن به 11 مگاوات افزايش يافت. در سال 1987 نيز يك نيروگاه كوچك از نوع بدون كندانسور به ظرفيت حدود 300 كيلووات نصب شد.
    در روسيه از منايع حرارت پايين عمدتاً جهت تامين گرمايش منطقه‌‌اي و يا گرمايش استخرهاي شنا، گلخانه‌ها و مزارع پرورش ماهي و يا درمان بيماريها استفاده مي‌شود. اخيراً كاربرد منابع زمين‌گرمايي در روسيه توسعه زيادي يافته است. در واقع وزارت علوم روسيه متولي توسعه طرحهاي كاربرد انرژي زمين‌گرمايي در كشور است.

    كاربرد انرژي زمين‌گرمايي در منطقه كامچاتكا
    شبه جزيره كامچاتكا همراه با جزاير كوريل در منتهي‌اليه شرق روسيه واقع شده است. ساكنين اين مناطق جهت تامين برق مورد نياز خود وابستگي شديدي به سوخت فسيلي وارداتي دارند. اخيراً هزينه توليد برق در نواحي مذكور به 25 سنت به ازاء هر كيلووات ساعت بالغ شد كه متعاقب آن سياستگزاران انرژي بر آن شدند تا استراتژي پيشين خود را تغيير داده و توجه بيشتري به منابع انرژيهاي تجديد‌پذير كنند. يكي از انواع انرژي‌هاي تجديد‌پذير، انرژي زمين‌گرمايي است كه روسها تجربيات فراواني در خصوص بهره‌برداري از آن دارند. آنها تاكنون حدود 1000 حلقه چاه در زمينه اكتشاف و استخراج منابع زمين‌گرمايي حفر كرده‌اند كه رقم بسيار قابل توجهي است. منطقه كامچاتكا داراي ذخاير فراوان انرژي زمين‌گرمايي است كه با مطالعات اكتشافي صورت گرفته، پتانسيل آنها برآورد شده است. طبق محاسبات بعمل آمده، منابع زمين‌گرمايي مذكور قادر خواهند بود برق مورد نياز شبه جزيره كامچاتكا را با هزينه بسيار كمتري نسبت به سوختهاي فسيلي تامين كنند.

    منطقه زمين‌گرمايي ماتنوسكي
    اين منطقه در جنوب شبه‌جزيره كامچاتكا قرار دارد. در واقع اين منطقه زمين‌گرمايي بخشي از منطقه آتشفشاني كامچاتكاي جنوبي است كه در حدود 8 كيلومتري شمال كوه آتشفشاني ماتنوسكي واقع شده است. نزديك‌ترين منطقه مسكوني به آن شهر پتروپاولوسك – كامچاتسكي است كه 125 كيلومتر بامنطقه زمين‌گرمايي فاصله دارد. در زمستان دسترسي به منطقه زمين‌گرمايي مشكل است زيرا در اين ايام بدليل بارش سنگين برف صرفاً با انجام عمليات برق روبي مي‌توان از جاده‌ها عبور كرد. منطقه زمين‌گرمايي ماتنوسكي يكي از بزرگترين نواحي روي كره زمين است كه حجم زيادي از حرارت داخل زمين به سطح آن راه مي‌يابد. بر اساس مطالعات اكتشافي بعمل آمده مشخص شده است كه منابع زمين‌گرمايي مناطق كامچاتكا و جزاير كوريل مشتركاً قادر به توليد 2000 مگاوات برق هستند.
    اين منطقه كه حدود 30 كيلومتر مربع وسعت دارد شامل آثار و شواهد حرارتي است كه در مجاورت آتشفشانهاي فعال وسيستمهاي زمين‌گرمايي حرارت بالا قرار دارند. در جنوب منطقه نيز كوه آتشفشان ماتنوسكي وجود دارد كه در مجاورت آن گازفشانهاي حرارت بالا و چشمه‌هاي آبداغ مشاهده مي‌شوند واز يال شمالي و دهانه آن نيز بخار خارج مي‌شود.
    اين منطقه از نظر فعاليت آتشفشاني بسيار فعال است و در آن دو آتشفشان فعال وجود دارد: ماتنوسكي و گورلي. البته يك آتشفشان خاموش و فرسايش يافته نيز به نام ژيروفسكي نزديكي منطقه زمين‌گرمايي به چشم مي‌خورد. در اطراف دهانه آتشفشان ماتنوسكي فعاليت‌هاي شديد گازفشاني مشاهده مي‌شود. آخرين فعاليت كوه آتشفشاني ماتنوسكي در سال 2001 رخ داد. در آن هنگام ناگهان دهانه آتشفشان منفجر شد كه بر اثر آن خاكسترهاي آتشفشاني به هوا پرتاب شدند.
    اكتشاف منطقه زمين‌گرمايي ماتنوسكي طي سالهاي 1978 تا 1990 انجام شده است. تاكنون بيش از 80 حلقه چاه كه عمق آنها بين 1000 تا 2500 متر است در منطقه‌اي به وسعت km225 حفر شده است.
    با استفاده از نتايج عمليات حفاري، تا حدود زيادي حدوده مخزن ماتنوسكي مشخص شد. در حال حاضر در نظر است كه يك نيروگاه 120 مگاواتي در مركز منطقه زمين‌گرمايي احداث شود. ماتنوسكي از نوع آبداغ بالنده است. بدين معني كه سيال غالب در مخزن آبداغ است. طبق برآوردهاي بعمل آمده منبع زمين‌گرمايي ماتنوسكي توانايي توليد 300 مگاوات برق را دارد.
    به طور كلي منابع زمين‌گرمايي منطقه كامچاتكا به دو دسته حرارت بالا و حرارت پايين تقسيم‌بندي مي‌شوند. منابع حرارت بالا (150 درجه سانتي‌گراد) داراي پتانسيلي معادل MWe1130 هستند. منابع حرارت پايين (150 > درجه سانتي‌گراد) داراي پتانسيل MWt 1345 براي يك دوره 100 ساله هستند. تاكنون طبق اكتشافات انجام شده بيش از 20 ميدان زمين‌گرمايي در منطقه كامچاتكا كشف شده است.
    در بين همه ميدانهاي كشف شده ميدان زمين‌گرمايي ماتنوسكي ميداني شاخص به شمار مي‌رود. تاكنون تمامي مطالعات اكتشافي ضروري در اين ميدان انجام شده است و اكنون براي استفاده‌هاي مختلف (توليد برق و كاربردهاي صنعتي) كاملاً آماده است. حدود 30 درصد چاههاي حفر شده در ميدان ماتنوسكي،‌چاههاي توليدي هستند.
    سيالهاي توليد شده از ميدان مذكور مخلوط بخار خشك و بخار مرطوب است كه درجه حرارت آن بيش از 240 درجه سانتي‌گراد بوده و آنتالپي آن معادل Kcal/kg 660 است. از نظر تركيب شيميايي، سيال خروجي از چاهها در زمره آبهاي كلريده، كلريده- سولفاته قرار مي‌گيرندكه آنيونهاي آنها سولفات و كلريد و مهمترين كاتيونهاي آنها سديم و كلسيم هستند. مهمترين گاز غيرقابل ميعان مخزن اسيد كربنيك (بيش از 70 درصد وزني) است. به علاوه در سولفيد هيدروژن، نتيروژن، اكسيژن،‌متان و هيدروژن نيز وجود دارد. ميزان H2S موجود در سيال مخزن به طور ميانگين حدود 10 درصد حجم كل گازهاي خروجي از چاهها است.

    نيروگاه زمين‌گرمايي ماتنوسكي
    در مرحله اول، يك نيروگاه 12 مگاواتي احداث شد. اين نيروگاه در حقيقت يك نيروگاه زمين‌گرمايي نمونه (پايلوت) از مجموعه‌اي از چند نيروگاه زمين‌گرمايي است كه در منطقه ماتنوسكي ساخته و راه‌اندازي خواهد شد. در هنگام احداث نيروگاه ماتنوسكي موارد زير موردتوجه قرار داشت:
    • سيستم آماده ‌سازي بخار مدولار كه به صورت پيش ساخته بودو پس از مونتاژ مورد استفاده قرار گرفت.
    • اغلب اجزاء نيروگاه (شامل توبوژنراتورها، قطعات الكتروتكنيكي، كنترل پانل اصلي و ...) در كارخانه ساخته شده و در محل نيروگاه به يكديگر متصل شدند.
    • با استفاده از كندانسورهاي هوايي از تماس مستقيم سيال زمين‌گرمايي با محيط اطراف جلوگيري شد.
    سيال دو فازي (مخلوط آبداغ وبخار) از طريق لوله‌ها در مخزن جمع‌آوري شده و پس از انجام عمل جدايش در دو مرحله به سمت سه واحد قدرت كه ظرفيت هر يك 4 مگاوات است، هدايت مي‌شود. شكل (5). بخار با فشار P0=0..8 Mpa و درجه حرارت 170 درجه سانتي‌گراد ودر حالتي كه كاملاً خشك است (ميزان رطوبت آن كمتر از 05/0 درصد است) وارد توربين مي‌شود. كيفيت بخار در ورودي توربين مشابه كيفيت آن در نيروگاههاي حرارتي فشار متوسط است. به منظور افزايش كارايي كاربرد انرژي زمين‌گرمايي، آبداغ (داراي درجه حرارت 170درجه سانتي‌گراد) بعد از جداكننده‌ها به سمت مخازن تبخير آني هدايت مي‌شود. دراين مخازن بخار داراي فشار 0.4 Mpa توليدمي‌شود. از اين بخار (حدود 10 تن بر ساعت) در اجكتورها جهت مكش و جدايش گازهاي غيرقابل ميعان و بيوژه گاز سولفيد هيدروژن (H2S) استفاده مي‌شود. گاز H2S خارج شده از كندانسور، وارد دستگاه جاذب 13 مي‌شود كه درآن گاز H2S در بخار چگالش يافته حل شده به سمت چاههاي تزريقي هدايت مي‌شود. همانگونه كه مشخص است گاز مذكور بدون هيچ ارتباطي با محيط اطراف مجدداً به درون مخزن زمين‌گرمايي تزريق مي شود. آب چگاليده خروجي از كندانسور به اندازه كافي خالص و تميز بوده صرفاً داراي مقدار كمي از املاح گوناگون به صورت محلول است. بنابراين چنانچه در طراحي سيكل توليد برق، درجه حرارت آب چگاليده حدود 50 درجه سانتي‌گراد در نظر گرفته شود،‌مي‌توان آنرا بدون مشكل رسوبگذاري در لوله‌ها و چاههاي تزريقي به درون چاهها تزريق كرد.
    كنترل سه واحد قدرت توسط تابلوي كنترل اصلي انجام مي‌شود. 6 مدول كندانسور هوايي درارتفاع 6 متري از صفحه توربوژنراتورها واقع شده است. هر مدول كندانسور هوايي از 8 مجموعه بهم پيوسته از لوله‌هاي فولادي (ضد زنگ) كه داراي پوششي از جنس روي است تشكيل شده است. خود لوله‌ها نيز توسط صفحات آلومينيومي دندانه‌دار (كه ارتفاع هر دندانه cm5/1 است) پوشيده شده است.
    سيستمهاي آماده‌سازي بخار يروگاه در كارخانه به صورت مدول و يكپارچه ساخته شده است. پس از آزمايش مدول دركارخانه آنها را توسط هواپيماهاي باري سنگين به كامچاتكا منتقل كردند. نهايتاً مدولها پس از نصب تحت شرايط واقعي با سيال زمين‌گرمايي مورد آزمايش قرار گرفتند. در مدول پمپ وچند سيستم مجزا وجود دارند شامل پمپ‌هاي سيستم تزريق، پمپ‌هاي يدكي و آتش‌نشاني و تابلوهاي كنترل الكتريكي. علاوه بر اين در هنگام بهره‌برداري، سيستم حفاظتي خاصي سبب جدايش رسوبات و املاح در توربين‌ها و كندانسورهاي هوايي مي‌شود.
    توربين و ژنراتور روي يك شاسي واحد نصب شده‌اند كه شامل سيستم پمپ روغن روان‌كننده و مخزن مربوطه آن نيز مي شود. توربين مستقيماً (بدون دنده كاهنده) به ژنراتور متصل بوده فركانس گردش آن معادل 50 دور در ثانيه است. هر واحد توربوژنراتور به طور مجزا در يك مدول قرار دارد. شركت سازنده در طراحي و ساخت توربينها از تجربيات خود در ساخت توربينهاي صنعتي و توربينهاي كشتي كمك گرفته است.
    توربينهاي مذكور داراي بخش‌هاي زير هستند:
    • پايه‌هاي قابل انعطاف در بخش جلويي سازه نگهدارنده
    • واحد تنظيم هيدروليكي در جلوي توربين
    • يك ياتاقان نگهدارنده مقاوم همراه با پمپ روغن در بخش جلويي سازه نگهدارنده
    توربين نيروگاه ماتنوسكي نسبت به توربينهاي صنعتي و كشتي‌ها دو تفاوت مهم دارد كه عبارت هستند از:
    1- كنترل بخار در لوله ورودي بوسيله دمپردوراني پروانه‌اي انجام مي‌شود.
    2- بخار ورودي به واحد قدرت از بالا وسقف واحد، وارد توربين مي‌شود.
    3- همه 10 طبقه توربين داراي سيستم جداسازي رطوبت پيشرفته‌اي هستند.

    مرحله اول توسعه نيروگاه
    در حال حاضر مرحله اول توسعه نيروگاه ماتنوسكي با ظرفيت 50 (25×2) مگاوات بوسيله يك شركت روسي در حال انجام است. هزينه‌هاي اجراي مرحله اول توسعه نيروگاه را مشتركاً بانك اروپايي توسعه وبازسازي و چند شركت روسي تقبل كرده‌اند. مرحله اول توسعه نيروگاه شامل موارد زير مي‌شود.
    ساختمان اصلي با امكانات مورد نياز جهت توربينها، تابلوي كنترل واحد قدرت، جداكننده‌ها، تجهيزات الكتروتكنيكي و يك مهمانسرا براي مهندسين ناظر در ساختگاه نيروگاه.
    در ساختگاه نيروگاه،‌محلي براي پست‌ها و كارگاههاي تعمير و نگهداري تجهيزات در نظر گرفته شده است. از سوي ديگر طبق قراردادهاي منعقد شده براي حفاري وتعمير چاههاي زمين‌گرمايي منطقه، ميزان دبي و فشار بخار لازم براي مرحله دوم توسعه نيروگاه به ترتيب كمتر از t/h320 و 7 بار خواهد بود. اين حجم بخار نه تنها مرحله اول توسعه را پوشش مي‌دهد بلكه بخار لازم براي مرحله دوم را نيز تامين مي‌كند. البته اين فشار و دبي مربوط به بخار ورودي به جدا‌كننده‌هاي نيروگاه خواهد بود. سيستم‌هاي آماده ‌سازي بخار نيروگاه شامل جداكننده‌ها، صدا خفه‌كن و سايرتجهيزات هستند. اين سيستم ها بايد به نحوي عمل كنند كه رطوبت بخار خروجي از آنها بيش از 05/0 درصد نباشد.
    آبداغ چگاليده همراه با آبداغ جدا شده از جداكننده‌ها قبل از تزريق مجدد از يك سيستم ذوب برق عبور مي‌كند و بدين ترتيب از حرارت آن جهت ذوب برف و يخ محيط نيروگاه استفاده مي‌شود.
    يك شركت روسي خط انتقال kv220 را از نيروگاه ماتنوسكي تا پست آواچا 18 در شهر اليزوو به طول 70 كيلومتر احداث خواهد كرد. شركتي ديگر هم جاده‌اي را بين شهر پتروپاولوسك – كامچاتسكي ونيروگاه زمين‌گرمايي ماتنوسكي خواهد ساخت. در واقع از اين جاده جهت انتقال تجهيزات نيروگاهي شامل توربوژنراتورها وساير تجهيزات فني (كه وزن هر يك از آنها به 50 تن نيز مي‌رسد) به ساختگاه نيروگاه استفاده خواهد شد.

    واحد چهارم نيروگاه همراه با سيكل تركيبي
    در سال 1965، دانشمندان روسي توانستند سيكلي را ابداع كنند كه به كمك آن مي‌توان از آبداغ گرمتر از 80 درجه سانتي‌گراد نيز برق توليد كرد. به منظور طراحي و آزمايش تجهيزات سيكل تركيبي نيروگاه ماتنوسكي تحت شرايط طبيعي و واقعي (درجه حرارت كم محيط، بارش برف فراوان تا ارتفاع 12 متر، باد قوي و لرزه خيزي بالا) شركت ژئوترم كار روي واحد چهارم نيروگاه ماتنوسكي را آغاز كرد. در حال حاضر واحد چهارم سيكل تركيبي در حال نصب است. در واقع هدف از طراحي و اجراي واحد چهارم، بكارگيري سيال دو فازي اضافي است كه از چاههاي زمين‌گرمايي خارج شده و توسط سه واحد قدرت موجود استفاده نمي‌شود. در بالاترين بخش سيكل، يك توربين از نوع بدون كندانسور با ظرفيت 3 مگاوات نيز نصب خواهد شد.
    سيال دو فازي از دو واحد جداكننده عبور كرده و بخار جدا شده به سمت توربين بخار هدايت مي‌شود. بخار مرطوب خروجي توربين، چگاليده شده وسپس در لوله‌هاي كندانسور – اواپراتور خنك مي‌شود.
    فشار بخار خروجي از توربين حدود 03/0 تا 11/0 مگاپاسكال است. توربينها،‌ژنراتورها و تجهيزات تبادل حرارت روي يك صفحه كه 5 متر از سطح زمين ارتفاع دارد، مستقر شده‌اند. به منظور جلوگيري از ريزش برف سنگين زمستاني نيز تمامي تجهيزات در يك مرحله سرپوشيده قرار دارند. از سوي ديگر جهت ممانعت از جمع شدن برف و يخ‌زدگي سطوح تبادل حرارت روي صفحات كندانسور‌هاي هوايي، اين صفحات رو به بيرون شيب دارند.
    فن‌ها و الكتروموتورها در معرض جريان هواي پيش گرم شده قرار دارند تا دچار شوك حرارتي نشوند. تجهيزات الكتروتكنيكي و ساير سيستمهاي كنترل خودكار در يك محفظه مخصوص قرار دارند كه داخل آن نيز توسط هواي گرم، گرم نگه داشته مي‌شود.
    ظرفيت نهايي واحد قدرت 9 مگاوات خواهد بود. نيروگاه دو مداره با ظرفيت اسمي 8/6 مگاوات، طراحي و ساخته خواهد شد. در واقع اين نيروگاه يك مدل نمونه (پايلوت) از مجموعه‌اي از مدولهاي قدرت دو مداره خواهد بود. در آينده اين مدولهاي قدرت در واحدهاي سيكل‌ تركيبي مرحله دوم توسعه نيروگاه بكار گرفته خواهند شد. علاوه براين مدولهاي مذكور در احداث نيروگاههاي زمين‌گرمايي دو مداره جديد با ظرفيت 6 و 12 مگاوات نيز بكار خواهند رفت.
    در حين طراحي، ساخت و آزمايش واحدهاي قدرت سيكل تركيبي چندين مشكل علمي و فني به شرح زير بوجود آمد:
    - انتخاب سيال عامل بهينه (داراي نقطه جوش پايين)
    - تعيين حداقل درجه حرارت آبداغ خروجي از سيستم براي جلوگيري از رسوب مواد سيليسي
    - انتخاب روش بهينه براي خارج كردن گازهاي غيرقابل ميعان از كندانسور- اواپراتور
    - در نظر گرفتن ملاحظات زيست‌محيطي براي حذف گاز H2S از محوطه نيروگاه
    شرايط آب وهوايي منطقه ماتنوسكي بسيار استثنايي است زيرا از يك سو در نواحي شمالي كره زمين قرار داشته و از سوي ديگر در ارتفاع قابل توجهي از سطح دريا واقع شده است. ميانگين درجه حرارت ساليانه اين منطقه 5/1 درجه سانتي‌گراد است. درجه حرارت ميانگين آن در يك دوره هشت‌ماهه (از آبان تا خرداد) كمتر از 5 درجه سانتي‌گراد است. اين درجه حرارت كم هوا به مهندسان طراح سيكل قدرت اجازه مي‌دهد كه درجه حرارت چگاليده رادر كندانسور تا حدود 10 الي 20 درصد كاهش دهند كه اين موضوع خود سبب افزايش 20 الي 24 درصد قدرت خروجي از نيروگاه در مقايسه با نيروگاههاي زمين‌گرمايي كه در نواحي بسيار گرم يا معتدل قرار دارند، مي‌شود.
    مزيت ديگر درجه حرارت كم آبداغ خروجي از كندانسور اين است كه بر اثر هر گونه كاهش فشار چاههاي توليدي، نقصان كمي در قدرت خروجي نيروگاه رخ مي‌دهد.
    توليد برق در سيكل تبخير آني نيروگاه ماتنوسكي با مشكلاتي همراه است. به عنوان مثال درتوربينها به حجم نسبتاً زيادي بخار نياز است و ارتفاع پره‌هاي طبقات آخر توربين نيز زياد است. هر دو عامل مذكور سبب كاهش كارايي سيكل توليد برق مي‌شوند. از سوي ديگر حذف گازهاي غيرقابل ميعان از كندانسور تحت فشار آب اشباع مستلزم صرف انرژي زيادي است. بنابراين به منظور رفع مشكلات فوق، مهندسان، سيكل تركيبي را پيشنهاد كردند. در واقع اين سيكل، تركيبي از سيكل تبخير آني و سيكل دو مداره است. سيال عامل واحد قدرت داراي نقطه انجماد پايين بوده كاركرد خوب آنرا در فصل زمستان تضمين مي كند. بدين معني كه سيال فوق در هنگام توقف عملكرد نيروگاه يخ نمي‌زند.

    واحدهاي سيكل تركيبي مرحله دوم توسعه نيروگاه
    همزمان با برنامه توسعه كاربرد انرژي زمين‌‌گرمايي در منطقه كامچاتكا، مرحله دوم توسعه نيروگاه به ظرفيت 60 مگاوات نيز آغاز شده است. ساخت مرحله سوم نيروگاه با ظرفيت 100 مگاوات هم برنامه‌ريزي است.
    دلايل زير سياستگزاران انرژي را بر آن داشت تا مراحل دوم و سوم توسعه نيروگاه را طراحي و برنامه‌ريزي كنند:
    1- داشتن شناخت كافي از منبع زمين‌‌گرمايي ماتنوسكي
    2- وجود جاده و خط انتقال برق در منطقه
    3- تجربيات بدست آمده از عملكرد نيروگاه زمين‌گرمايي ماتنوسكي
    4- وجود برق در محل ساختگاه نيروگاه جهت اجراي سريعتر طرحهاي توسعه‌اي
    بر اساس مطالعات اوليه، مرحله دوم توسعه نيروگاه، شامل دو واحد قدرت از نوع سيكل تركيبي است كه كل مصرف بخار و آبداغ آن به ترتيب معادل 320 و 640 تن بر ساعت است.
    در مرحله دوم توسعه نيروگاه، هر واحد قدرت شامل يك توربين بخار (از نوع بدون كندانسور) داراي ظرفيت 12 مگاوات وسه مدول سيكل دو مداره است كه ظرفيت هر يك از مدولها 6 مگاوات است. ظرفيت نهايي واحدهاي سيكل تركيبي حداقل 20 درصد بيش از واحدهاي تبخير آني مرحله اول بوده ودر نتيجه اقتصادي‌تر هستند.
    در خاتمه اين نكته نيز شايان ذكر است كه اگر تمام انرژي‌ الكتريكي مورد نياز منطقه كامچاتكا از منابع زمين گرمايي تامين شود، ساليانه تقريباًً معادل 000/900 تن در مصرف سوختهاي فسيلي صرفه‌جويي خواهد شد.
    نيروگاه گازي
    نيروگاه هاي گازي ، كاربردهاي ويژه اي دارند.
    نيروگاه گازي به نيروگاهي مي گويند كه برمبناي سيكل گاز( سيكل برايتون) كارمي كند ؛وازسيكل هاي حرارتي مي باشد، يعني سيال عامل كاريك گاز است.( عامل انتقال وتبديل انرژي گازي است ، مثلا هوا )
    درنيروگاه هاي بخارعامل انتقال : بخارمايع مي باشد.
    نيروگاه گازي داراي توربين گازي است ،يعني باسيكل رايتون كارمي كند.ساختمان آن درمجموع ساده است :
    1. كمپرسور: وظيفه فشردن كردن هوا .
    2. اتاق احتراق : وظيفه سوزاندن سوخت درمحفظه .
    3. توربين : وظيفه گرداندن ژنراتور .
    كمپرسور به كاررفته درنيروگاه هاي گازي شبيه توربين است ، داراي رتوري است كه برروي اين رتور پره متحرك است ، هوا به حركت درآمده وبه پره هاي ساكني برخوردكرده ، درنتيجه جهت حركت هوا عوض شده واين هوا بازبه پره هاي متحرك برخورد كرده واين سيكل ادامه دارد ودرهرعمل هوا فشرده ترمي شود.
    كمپرسور مصرف كننده عظيم انرژي است .
    هواي فشرده گرم است .

    هواي فشرده كمپرسور وارد اتاق احتراق كه داراي سوخت گازوئيل است مي شود .
    چون هواي فشرده شده گرم است ودراتاق احتراق سوخت آتش گرفته وهوافشرده وداغ مي شود .
    هواي داغ فشرده كارهمان بخارداغ فشرده توربين هاي بخار راانجام مي دهد .
    هواي داغ فشرده رابه توربين مي دهيم ؛ توربين داراي پره هاي متحرك وساكن است .
    پره هاي ثابت چسبيده به استاتور مي باشد ؛ پره هاي متحرك چسبيده به رتور مي باشد.
    حال ژنراتور رامي توان به محور وصل كرده واز ترمينال هاي ژنراتور مي توان برق گرفت ؛ طول نيروگاه ممكن است به m 20 است . ژنراتور را مي توان به محل B ويا A متصل نمود ؛ اما محل A بهتراست .
    قدرت نيروگاه هاي گازي از 1 M w وتا بالاي 100Mw نيز ساخته مي شود .
    نحوه راه اندازي واستارت نيروگاه چگونه است ؟
    درابتدا نياز به يك عامل خارجي است تا توربين رابه سرعت 3000 دوربرساند.
    حسن نيروگاه :
    1. سادگي آن است –تمام آن روي يك شافت سواراست .
    2. ارزان است – چون تجهيزات آن كم است . يكي از عواملي كه برروي راندمان تأثيرمي گذارداين است كه هواي ورودي چه دمايي دارد.
    3. سريع النصب است .
    4. كوچك است . درسكوهاي نفتي كه نياز به برق زيادي مي باشد بايدازنيروگاه گازي استفاده كرد، تاجاي كمتري بگيرد.
    5. احتياج به آب ندارد. ( درسيكل اصلي نيروگاه نياز به آب نيست ) اما درتجهيزات جنبي نيازبه آب است براي خنك كردن هيدروژن به كاررفته جهت سردكردن ژنراتور درسرعت هاي بالا .
    6. راه اندازي اين نيروگاه سريع است .
    7. پرسنل كم .
    زماني نيروگاه گازي خاموش است كه دراتاق احتراق سوخت نباشد .
    يك نيروگاه بخار رابعد از راه اندازي نبايد خاموش كرد .
    اما نيروگاه گازي بدين صورت است كه صبح مي توان روشن كردوآخرشب خاموش نمود .
    نيروگاه گازي بسيارمناسب براي بارپيك است ونيروگاه بخاربراي بارپيك نامناسب است .
    معايب :
    1. آلودگي محيط زيست زياد است .
    2. عمرآن كم است .( فرسودن توربين وكمرسور)
    سوخت مازوت به علت آلودگي بيشتري كه نسبت به سوخت گازوئيل دارد، كمتربه كارمي رود
    3. استهلاك زياداست . ( پره توربين ، پره كمپرسور )
    4. راندمان كم است . ( مصرف سوخت آن زياد است ) ؛ اين نقيصه اي است كه كشورهاي اروپايي باآن مواجهند .
    دلايل راندمان پايين :
    الف ) خروج دود بادماي زياد
    ب ) حدود 3/1 توان توربين صرف كمپرسور مي شود . بنابراين درنيروگاه گازي براي استفاده درازمدت اصلا جايزنيست چراكه هزينه مصرف سوخت گران است .
    5. امكان استفاده ازسوخت جامد فراهم نيست . ( مانند زغال سنگ ) چراكه بلافاصله پره هاي رتورپرازدود مي شود .
    نيروگاه هاي گازي رااگربخواهيم براي مدت طولاني استفاده كنيم ، هزينه نيروگاه گازي بالا ست .
    نيروگاه گازي راازجايي استفاده كنند كه امكان بهره برداري زمان بهره برداري زير2000 ساعت باشد .
    اگرزمان بهره برداري بالاي 2000 ساعت باشد (رسال) نيروگاه بخار اگرزمان بهره برداري درسال بالاي 5000ساعت باشد ، نيروگاه آبي استفاده مي شود.
    دركشورما برق عمده مصرفي برق خانگي است ( 60% ) وحدود 30 % برق صنعتي است . درنتيجه 50 % نيروگاه هاي كشوربايد هرشب روشن شود ؛ بنابراين قسمت عمده برق توليدي مابايد ازنوع نيروگاه گازي باشد.
    نيروگاه گازي رابه دليل ارزاني دركارخانجات نيز مي توان به كاربرد .نيروگاه گازي را درنيروگاه اتمي نيزاستفاده مي شود جهت سردكردن رآكتور به كارمي رود كه درنتيجه هواداغ وفشرده مي شود ودرنتيجه به نيروگاه گازي داده وبرق مصرفي نيروگاه اتمي راتأمين مي كنند .
    درنيروگاه هاي گازي جهت افزايش راندمان روش هايي رااتخاذ مي كنند.
    1- دود خروجي هواي ورودي به اتاق را گرم مي كند .( سيكل پيچيده ترشده اما راندمان بالا مي رود. )
    حالت اول : دودباهواب ورودي كمپرسوركناريكديگرقرارداده دراين صورت راندمان تجهيزات به شدت افت مي كند.
    حالت دوم : باروش ذيل راندمان 1 الي 2 درصدقابل افزايش است ؛ ( هواي ورودي به اتاق احتراق گرم مي شود )
    2 – استفاده از توربين هاي دو مرحله اي :
    زياد شدن راندمان مستلزم مخارج وصرف هزينه نيز مي باشد .
    2. استفاده از كمپرسور دومرحله اي هر چه دماي ورودي كمپرسور پايين ترباشد ؛ راندمان بيشتراست .
    بااين روش دماي ورودي كمپرسور به طورمصنوعي پايين نگه داشته مي شود درمرحله L p به دليل بالارفتن فشارهواگرم مي شود كه ازكولراستفاده مي كنند ؛ آب سرد برروي لوله فشارهوا ريخته وهواخنك كرده آب گرم مي شود وخارج مي شود .
    بالاترين راندمان چيزيث درحدود 35% است كه نيروگاه داراي كمپرسور دومرحله اي توربين دومرحله اي وپيش گرم كن مي باشد.
    نيروگاه گازي به اين معنا نيست كه سوخت ان گازاست ، بلكه توربين آن گازي است وسوخت آن مايع است يا گازوئيل است كه اكثرا گازوئيل است .
    دركشورما به دليل زيادبودن سوخت گازوئيل ، نيروگاه گازي باسوخت گازوئيل نيروگاه گازي باسوخت گازوئيل به كار ميرودومرسوم است اما دركشورهاي اروپايي به دليل زيادبودن سوخت جامد ، نيروگاه گازي به نحو ديگري طراحي شده كه باسوخت جامد كارمي كند ، به اين نيروگاه ها ، نيروگاه گازي سيكل بسته مي گويند.
    هواي داغ ناشي ازاحتراق راداخل گرم كن مي چرخانيم وبعد هوارابيرون مي فرستيم .
    ملاحظه مي شودكه هواي داغ ناشي از احتراق داخل توربين مي شود .لذامي توان ازسوخت جامد استفاده كردكه اين نوع ساده ترين نوع نيروگاه گازي سيكل بسته مي باشد.
    مي توان سيكل فوق راكامل تركرد. اگرهواي ورودي به كمپرسورتصفيه شده باشد ، پره هاي توربين داراي عمرزيادي خحواهدبود. مشكل ايجاد اين است كه هواي خارج شده ازتوربين به دليل تصفيه بودن بايداستفاده شود ، پس هواس خروجي ازتوربين رااستفاده مي كنيم ، اما اين هوا داغ است وگاز وارد كمپرسور شود راندمان افت مي كند ؛ لذااز كولراستفاده مي كنيم وهواراسرد مي كنند .
    در نيروگاه گازي هرچه هواي ورودي به كمپرسور سردتر باشد، راندمان افزايش م يابد. لذا نيروگاه هاي گازي درزمستان راندمان بهتري دارند.
    محاسن نيروگاه هاي گازي سيكل بسته :
    1. امكان استفاده ازسوخت جامد فراهم مي شود.
    2. عمرزياد ( خوردگي پره ها كم است )
    3. چون سيكل بسته است ، لذاضرورت نداردكه فشارهواي خروجي توربين 1 Atm باشد، پس مي توان سطح كارفشار هوارابالا برد، به جاي 1 Atm از 10 Atm كه چون هواي فشرده ترشده ، جاي كمتري گرفته وحجم كمپرسور وتوربين درنهايت كوچك ترمي شود.
    معايب :
    1. راندمان درمقايسه باسيكل بازكمتر است . 4 الي 5 درصد راندمان كاهش مي يابد.
    2. هزينه زياداست .
    درسوخت مايع نيروگاه هاي گازي سيكل بسته ، اجازه داريم توربين رادوقسمتي بسازيم .
    كمپرسورهواراگرفته وداخل اتاق احتراق مي سوزاند ، هواي خروجي آن راوارد گرم كن مي كنيم كه خود گرم كن يك سيكل بسته راتشكيل مي دهد.
    توربين كمكي قدرت لازم ازژنراتور كوچك درقسمت توربين كمكي به كاربرد .
    درنيروگاه گازي سيكل بازداراي معايب زيراست :
    قدرت كمپرسور خيلي ازانرژي توربين رامي گيرد وهمچنين دود خروجي داغ است 3 00 C درنتيجه سوخت ايجاد شده به هدرمي رود ؛ لذا راندمان كاهش مي يابد.
    استفاده از نيروگاه سيكل تركيبي ( نيروگاه گازي دركنار نيروگاه بخار)
    هواي گرم خروجي ازتوربين رابال اضافه كردن اكسيژن به آن به طرف بويل نيروگاه بخار برده مي شود .
    راندمان اين قبيل نيروگاه ها50 % مي باشد








     

     

    منوي اصلي
  • صفحه اصلي

  • فهرست مقالات

  • مطالب جديد

  • خبرنامه

  • تالار گفتگو

  • طراحي وب

  • آلبوم تصاوير

  • جستجو

  • درباره ما

  • پرسش و پاسخ

  •  

    مطالب جديد
     

         
    Designed by Ahmad Zeini Copyright © 2003 - 2012 by AutoIR iranresearch , All rights reserved. www.iranresearch.com www.iranresearch.ir www.autoir.ir Designed by Ahmad Zeini
    کلیه حقوق مادی و معنوی این سایت متعلق به شرکت کیا پارس سنجش می باشد
    !تبادل لینک رایگان

    !امتیاز بدهید
    .ما را در گوگل محبوب کنید